A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanical analysis of percutaneous sacroplasty using CT image based finite element models. | LitMetric

Mechanical analysis of percutaneous sacroplasty using CT image based finite element models.

Med Eng Phys

Department of Engineering Science and Mechanics, Virginia Tech-Wake Forest School of Bioengineering and Science, Virginia Tech, Blacksburg, VA 24061, United States.

Published: April 2007

Sacral insufficiency fractures are an under-diagnosed source of acute lower back pain. A polymethylmethacrylate (PMMA) cement injection procedure called sacroplasty has recently been utilized as a treatment for sacral insufficiency fractures. It is believed that injection of cement reduces fracture micromotion, thus relieving pain. In this study, finite element models were used to examine the mechanical effects of sacroplasty. Finite element models were constructed from CT images of two cadavers on which sacroplasties were performed. The images were used to create the mesh geometry, and to apply non-homogeneous material properties to the models. Models were created representing the case with and without cement, thus simulating the pre- and post-sacroplasty situation. The results indicate that the sacrum has a 3D multi-axial state of strain. While compressive strains were the largest, tensile and shear strains were significant as well. Cement in the sacrum reduced strains 40-60% locally around the cement. However, overall model stiffness only increased 1-4%. This indicates that the effects of sacroplasty are primarily local.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2006.03.008DOI Listing

Publication Analysis

Top Keywords

finite element
12
element models
12
sacral insufficiency
8
insufficiency fractures
8
effects sacroplasty
8
models
5
cement
5
mechanical analysis
4
analysis percutaneous
4
sacroplasty
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!