The pyrimidine reductase of the riboflavin biosynthetic pathway (MjaRED) specified by the open reading frame MJ0671 of Methanocaldococcus jannaschii was expressed in Escherichia coli using a synthetic gene. The synthetic open reading frame that was optimized for expression in E. coli directed the synthesis of abundant amounts of the enzyme with an apparent subunit mass of 25 kDa. The enzyme was purified to apparent homogeneity and was shown to catalyze the conversion of 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate into 2,5-diamino-6-ribitylamino-4(3H)-pyrimidinone 5'-phosphate at a rate of 0.8 micromol min(-1) mg(-1) at pH 8.0 and at 30 degrees C. The protein is a homodimer as shown by sedimentation equilibrium analysis and sediments at an apparent velocity of 3.5 S. The structure of the enzyme in complex with the cofactor nicotinamide adenine dinucleotide phosphate was determined by X-ray crystallography at a resolution of 2.5 Angstroms. The folding pattern resembles that of dihydrofolate reductase with the Thermotoga maritima ortholog as the most similar structure. The substrate, 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate, was modeled into the putative active site. The model suggests the transfer of the pro-R hydrogen of C-4 of NADPH to C-1' of the substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2006.04.045 | DOI Listing |
ACS Synth Biol
January 2025
State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
Cannabichromene (CBC), a valuable but extremely low-abundance component of cannabinoids in L., is known for its ability to promote neurogenesis. The scarcity of CBC in natural is primarily attributed to the inefficiency of the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4 phosphate (DOXP/MEP) and fatty acid metabolism pathways, along with the limited competitive advantage of cannabichromenic acid synthetase (CBCAS) compared to other cannabinoid synthases.
View Article and Find Full Text PDFMolecules
December 2024
School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641, Japan.
It is established that reverse hydroxamate analogs of fosmidomycin inhibit the growth of by inhibiting 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), the second enzyme of the non-mevalonate pathway, which is absent in humans. Recent biochemical studies have demonstrated that novel reverse fosmidomycin analogs with phenylalkyl substituents at the hydroxamate nitrogen exhibit inhibitory activities against DXR at the nanomolar level. Moreover, crystallographic analyses have revealed that the phenyl moiety of the -phenylpropyl substituent is accommodated in a previously unidentified subpocket within the active site of DXR.
View Article and Find Full Text PDFNat Metab
January 2025
Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
Bone lengthening and fracture repair depend on the anabolic properties of chondrocytes that function in an avascular milieu. The limited supply of oxygen and nutrients calls into question how biosynthesis and redox homeostasis are guaranteed. Here we show that glucose metabolism by the pentose phosphate pathway (PPP) is essential for endochondral ossification.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands. Electronic address:
The enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) catalyses the first step of the MEP pathway, a key process for isoprenoid biosynthesis in bacteria that is absent in humans, making it a promising drug target. We present the structure of Mycobacterium tuberculosis DXPS in its apo form, obtained through a soaking method that removes thiamine diphosphate (ThDP) and metals from pre-formed crystals. The apo structure had three regions with absence of electron density near the active site that are unique to the apo form of the enzyme.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA.
Inositol polyphosphate-5-phosphatase E (INPP5E) is a 5-phosphatase critically involved in diverse physiological processes, including embryonic development, neurological function, immune regulation, hemopoietic cell dynamics, and macrophage proliferation, differentiation, and phagocytosis. Mutations in cause Joubert and Meckel-Gruber syndromes in humans; these are characterized by brain malformations, microphthalmia, situs inversus, skeletal abnormalities, and polydactyly. Recent studies have demonstrated the key role of INPP5E in governing intracellular processes like endocytosis, exocytosis, vesicular trafficking, and membrane dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!