FEBS Lett
College of Medicine, Seoul National University, Jongno-gu, Republic of Korea.
Published: June 2006
Reverse engineering of biomolecular regulatory networks such as gene regulatory networks, protein interaction networks, and metabolic networks has received an increasing attention as more high-throughput time-series measurements become available. In spite of various approaches developed from this motivation, it still remains as a challenging subject to develop a new reverse engineering scheme that can effectively uncover the functional interaction structure of a biomolecular network from given time-series expression profiles (TSEPs). We propose a new reverse engineering scheme that makes use of phase portraits constructed by projection of every two TSEPs into respective phase planes. We introduce two measures of a slope index (SI) and a winding index (WI) to quantify the interaction properties embedded in the phase portrait. Based on the SI and WI, we can reconstruct the functional interaction network in a very efficient and systematic way with better inference results compared to previous approaches. By using the SI, we can also estimate the time-lag accompanied with the interaction between molecular components of a network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2006.05.035 | DOI Listing |
Microbiology (Reading)
March 2025
Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK.
bacteria are renowned for their multicellular lifestyle and production of bioactive molecules (natural products) with important applications in medicine, agriculture and industry. Studies of several species have provided a foundational understanding of their biology and metabolism. However, investigating the spatiotemporal processes governing the morphogenesis and development of these remarkable bacteria has been technically challenging due to their complex life cycle.
View Article and Find Full Text PDFBackground: Copy number variants (CNVs) contribute to 3% to 10% of isolated congenital heart disease (CHD) cases, yet their pathogenic roles remain unclear. Diagnostic efforts have focused on protein-coding genes, largely overlooking long noncoding RNAs (lncRNAs), which play key roles in development and disease.
Methods And Results: We systematically analyzed lncRNAs overlapping clinically validated CNVs in 743 patients with CHD from the Cytogenomics of Cardiovascular Malformations Consortium.
OMICS
March 2025
Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India.
Intracellular calcium signaling is a cornerstone in cell biology and a key molecular target for human health and disease. Calcium/calmodulin dependent protein kinase kinases, CAMKK1 and CAMKK2 are serine/threonine kinases that contribute to the regulation of intracellular calcium signals in response to diverse stimuli. CAMKK1 generally has stable dynamics, whereas CAMKK2 dysregulation triggers oncogenicity and neurological disorders.
View Article and Find Full Text PDFFront Immunol
March 2025
Pfizer Oncology, Pfizer Inc., La Jolla, CA, United States.
Introduction: CD47 is highly expressed on cancer cells and triggers an anti-phagocytic "don't eat me" signal when bound by the inhibitory signal regulatory protein α (SIRPα) expressed on macrophages. While CD47 blockade can mitigate tumor growth, many CD47 blockers also bind to red blood cells (RBCs), leading to anemia. Maplirpacept (TTI-622, PF-07901801) is a CD47 blocking fusion protein consisting of a human SIRPα fused to an IgG4 Fc region and designed to limit binding to RBCs.
View Article and Find Full Text PDFFront Mol Biosci
February 2025
Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
Background: Numerous studies have reported that dysregulation of fatty acid metabolic pathways is associated with the pathogenesis of vitiligo, in which arachidonic acid metabolism (AAM) plays an important role. However, the molecular mechanisms of AAM in the pathogenesis of vitiligo have not been clarified. Therefore, we aimed to identify the biomarkers and molecular mechanisms associated with AAM in vitiligo using bioinformatics methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.