Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200600585DOI Listing

Publication Analysis

Top Keywords

quantum mechanical
4
mechanical studies
4
studies crystallographic
4
crystallographic model
4
model bathorhodopsin
4
quantum
1
studies
1
crystallographic
1
model
1
bathorhodopsin
1

Similar Publications

Cubic silicon-carbide crystals (3C-SiC), known for their high thermal conductivity and in-plane stress, hold significant promise for the development of high-quality (Q) mechanical oscillators. We reveal degeneracy-breaking phenomena in 3C-phase crystalline silicon-carbide membrane and present high-Q mechanical modes in pairs or clusters. The 3C-SiC material demonstrates excellent microwave compatibility with superconducting circuits.

View Article and Find Full Text PDF

Crystalline pentacene is a model solid-state light-harvesting material because its quantum efficiencies exceed 100% via ultrafast singlet fission. The singlet fission mechanism in pentacene crystals is disputed due to insufficient electronic information in time-resolved experiments and intractable quantum mechanical calculations for simulating realistic crystal dynamics. Here we combine a multiscale multiconfigurational approach and machine learning photodynamics to understand competing singlet fission mechanisms in crystalline pentacene.

View Article and Find Full Text PDF

[FeFe]-hydrogenases are enzymes that catalyze the redox interconversion of H and H using a six-iron active site, known as the H-cluster, which consists of a structurally unique [2Fe] subcluster linked to a [4Fe-4S] subcluster. A set of enzymes, HydG, HydE, and HydF, are responsible for the biosynthesis of the [2Fe] subcluster. Among them, it is well established that HydG cleaves tyrosine into CO and CN and forms a mononuclear [Fe(II)(Cys)(CO)(CN)] complex.

View Article and Find Full Text PDF

Advances and insights into modeling extracellular electron transfer in anaerobic bioprocesses.

Sci Total Environ

January 2025

Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, United States. Electronic address:

Extracellular electron transfer (EET) plays an important role in maintaining redox balance in both natural and engineered anaerobic microbial systems, driving key biochemical processes such as energy generation, bioremediation, and waste degradation. While EET has been characterized in a limited number of microbes and applied in anaerobic digestion and bioelectrochemical systems, further research is needed to explore its mechanism across a broader range of microbial species and anaerobic processes. This review highlights advanced modeling frameworks that provide deeper insights into EET mechanisms and dynamics, aiming to optimize research efforts and minimize time and resource expenditure.

View Article and Find Full Text PDF

Accurately calculating the diradical character () of molecular systems remains a significant challenge due to the scarcity of experimental data and the inherent multireference nature of the electronic structure. In this study, various quantum mechanical approaches, including broken symmetry density functional theory (BS-DFT), spin-flip time-dependent density functional theory (SF-TDDFT), mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT), complete active space self-consistent field (CASSCF), complete active space second-order perturbation theory (CASPT2), and multiconfigurational pair-density functional theory (MCPDFT), are employed to compute the singlet-triplet energy gaps () and values in Thiele, Chichibabin, and Müller analogous diradicals. By systematically comparing the results from these computational methods, we identify optimally tuned long-range corrected functional CAM-B3LYP in the BS-DFT framework as a most efficient method for accurately and affordably predicting both and values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!