With the help of the crystal structure of rhodopsin an ab initio method has been developed to calculate the three-dimensional structure of the loops that connect the transmembrane helices (TMHs). The goal of this procedure is to calculate the loop structures in other G-protein coupled receptors (GPCRs) for which only model coordinates of the TMHs are available. To mimic this situation a construct of rhodopsin was used that only includes the experimental coordinates of the TMHs while the rest of the structure, including the terminal domains, has been removed. To calculate the structure of the loops a method was designed based on Monte Carlo (MC) simulations which use a temperature annealing protocol, and a scaled collective variables (SCV) technique with proper structural constraints. Because only part of the protein is used in the calculations the usual approach of modeling loops, which consists of finding a single, lowest energy conformation of the system, is abandoned because such a single structure may not be a representative member of the native ensemble. Instead, the method was designed to generate structural ensembles from which the single lowest free energy ensemble is identified as representative of the native folding of the loop. To find the native ensemble a successive series of SCV-MC simulations are carried out to allow the loops to undergo structural changes in a controlled manner. To increase the chances of finding the native funnel for the loop, some of the SCV-MC simulations are carried out at elevated temperatures. The native ensemble can be identified by an MC search starting from any conformation already in the native funnel. The hypothesis is that native structures are trapped in the conformational space because of the high-energy barriers that surround the native funnel. The existence of such ensembles is demonstrated by generating multiple copies of the loops from their crystal structures in rhodopsin and carrying out an extended SCV-MC search. For the extracellular loops e1 and e3, and the intracellular loop i1 that were used in this work, the procedure resulted in dense clusters of structures with Calpha-RMSD approximately 0.5 angstroms. To test the predictive power of the method the crystal structure of each loop was replaced by its extended conformations. For e1 and i1 the procedure identifies native clusters with Calpha-RMSD approximately 0.5 angstroms and good structural overlap of the side chains; for e3, two clusters were found with Calpha-RMSD approximately 1.1 angstroms each, but with poor overlap of the side chains. Further searching led to a single cluster with lower Calpha-RMSD but higher energy than the two previous clusters. This discrepancy was found to be due to the missing elements in the constructs available from experiment for use in the calculations. Because this problem will likely appear whenever parts of the structural information are missing, possible solutions are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.21022 | DOI Listing |
Small
January 2025
College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.
Metal-free molecular perovskites have shown great potential for X-ray detection due to their tunable chemical structures, low toxicity, and excellent photophysical properties. However, their limited X-ray absorption and environmental instability restrict their practical application. In this study, cesium-based molecular perovskites (MDABCO-CsX, X = Cl, Br, I) are developed by introducing Cs at the B-site to enhance X-ray absorption while retaining low toxicity.
View Article and Find Full Text PDFChemistry
January 2025
Politecnico di Milano, Department of Chemistry, Materials, Chemical Engineer., via Mancinelli 7, 20131, Milan, ITALY.
Molecular recognition mediated by s-hole interactions is enhanced as the electrostatic potential at the σ-hole becomes increasingly positive. Traditional methods to strengthen σ-hole donor ability of atoms such as halogens often involve covalent modifications, such as, introducing electron-withdrawing substituents (neutral or positively charged) or electrochemical oxidation. Metal coordination, a relatively underexplored approach, offers a promising alternative.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.
One new azaphilone derivative () from in ordinary medium, one new phthalide derivative (), a microbial transformation product of ingredients by , a pair of new austdiol enantiomers (+)- and (-)-, one new epsilon-caprolactone derivative (), and one new ophiobolin-type sesterterpenoid () from the in host medium were reported. The structures were determined by spectroscopic analysis and single-crystal X-ray diffraction. Compounds - could completely inhibit the germination of rice seeds at 50 μg/mL, which is higher than that of the positive control.
View Article and Find Full Text PDFElife
January 2025
Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands.
Circulating sexual stages of ) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of in the form of gametes and gametocyte extracts.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane, 690-8504, Japan.
Paddlewheel-type diruthenium(II,II) complexes are paramagnetic with two unpaired electrons ( = 1) and can be utilized as versatile building blocks for higher-order structures, such as supramolecular complexes, coordination polymers, and metal-organic frameworks, although they are generally highly air-sensitive. In this study, we developed an air-stable paddlewheel-type diruthenium(II,II) complex with two electron-withdrawing 1,8-naphthyridine-2-carboxylate (npc) ligands, [Ru(μ-npc)(OCMe)] (1). The two acetate ligands in 1 can be replaced by other carboxylate ligands; the solvothermal reactions of 1 with benzoic acid (HOCPh) yields the heteroleptic [Ru(μ-npc)(OCPh)] (2), whereas its reaction with 1,8-naphthyridine-2-carboxylic acid (Hnpc) produces the homoleptic [Ru(μ-npc)(η-npc)] (3).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!