Noise-induced linewidth in frequency combs.

Opt Lett

Department of Applied Mathematics, Unversity of Colorado, Boulder, 80309-0526, USA.

Published: June 2006

Frequency combs generated by trains of pulses emitted from mode-locked lasers are analyzed when the center time and phase of the pulses undergo noise-induced random walk, which broadens the comb lines. Asymptotic analysis and computation reveal that, when the standard deviation of the center-time jitter of the nth pulse scales as n(p/2) where p is a jitter exponent, the linewidth of the kth comb line scales as k(2/p). The linear-dispersionless (p=1) and pure-soliton (p=3) dynamics in lasers are derived as special cases of this time-frequency duality relation. In addition, the linewidth induced by phase jitter decreases with power P(out), as (P(out))(-1/p).

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.31.001875DOI Listing

Publication Analysis

Top Keywords

frequency combs
8
noise-induced linewidth
4
linewidth frequency
4
combs frequency
4
combs generated
4
generated trains
4
trains pulses
4
pulses emitted
4
emitted mode-locked
4
mode-locked lasers
4

Similar Publications

The integrated frequency comb generator based on Kerr parametric oscillation has led to chip-scale, gigahertz-spaced combs with new applications spanning hyperscale telecommunications, low-noise microwave synthesis, light detection and ranging, and astrophysical spectrometer calibration. Recent progress in lithium niobate (LiNbO) photonic integrated circuits (PICs) has resulted in chip-scale, electro-optic (EO) frequency combs, offering precise comb-line positioning and simple operation without relying on the formation of dissipative Kerr solitons. However, current integrated EO combs face limited spectral coverage due to the large microwave power required to drive the non-resonant capacitive electrodes and the strong intrinsic birefringence of LiNbO.

View Article and Find Full Text PDF

Acoustic frequency comb generation on a composite diamond/silicon microcantilever in ambient air.

Microsyst Nanoeng

January 2025

Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, 27 South Shanda Road, Shandong, 250100, P. R. China.

Acoustic frequency combs (AFCs) contain equidistant coherent signals with unconventional possibilities on metrology. Previously, implementation of AFCs on mechanical microresonators with large air damping loss is difficult, which restricted their atmospheric applications. In this work, we explore the potentials of a composite diamond/silicon microcantilever for parametric generation of AFCs in ambient air.

View Article and Find Full Text PDF

Squeezed dual-comb spectroscopy.

Science

January 2025

Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO, USA.

Optical frequency combs have enabled unique advantages in broadband, high-resolution spectroscopy and precision interferometry. However, quantum mechanics ultimately limits the metrological precision achievable with laser frequency combs. Quantum squeezing has led to significant measurement improvements with continuous wave lasers, but experiments demonstrating metrological advantage with squeezed combs are less developed.

View Article and Find Full Text PDF

We demonstrate a compact ring-assisted Mach-Zehnder interferometer (RAMZI)-based silicon photonic interleaver with a 400 GHz free spectral range (FSR), featuring flat passbands exceeding a spectral range of 50 nm. Additionally, we introduce a novel, to the best of our knowledge, add-on structure and tuning method enabling automated compensation for fabrication imperfections, precise shaping of the RAMZI flat-top passbands, and alignment with Kerr comb lines. Experimental results have shown successful interleaving of eight channels of distributed-feedback (DFB) lasers as well as a 200 GHz Kerr comb, both achieving an extinction ratio of approximately 20 dB.

View Article and Find Full Text PDF

We present a new, to the best of our knowledge, approach for self-heterodyne optical frequency comb (OFC) spectroscopy in which a single Mach-Zehnder modulator is utilized to generate both an optical frequency comb and a frequency-shifted local oscillator. This method allows for coherent, time-domain averaging to be performed without the need for feedback mechanisms or software corrections. As an initial demonstration, we have measured acetylene rovibrational transition frequencies with coherently averaged comb spectra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!