We demonstrate the design, fabrication, and characterization of single-mode low-loss waveguides for mid-infrared (MIR) wavelengths. Planar waveguide structures were fabricated from multilayer thin films of arsenic-based chalcogenide glasses followed by the creation of channel waveguides by using the photodarkening effect. Propagation losses as low as 0.5 dB/cm were measured for a quantum cascade laser end-fire coupled into the waveguides. This is a first step toward the design and fabrication of integrated optical components for MIR applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.31.001860 | DOI Listing |
Sensors (Basel)
December 2024
Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan.
In this study, we experimentally demonstrate a PPLN-based free-space to SMF (single-mode fiber) conversion system capable of efficient long-wavelength down-conversion from 518 nm, optimized for minimal loss in highly turbid water, to 1540 nm, which is ideal for low-loss transmission in standard SMF. Leveraging the nonlinear optical properties of periodically poled lithium niobate (PPLN), we achieve a wavelength conversion efficiency of 1.6% through difference frequency generation while maintaining a received optical signal-to-noise ratio of 10.
View Article and Find Full Text PDFMicromachines (Basel)
October 2024
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China.
A photonic lantern is a low-loss device that connects a single multimode waveguide to multiple single-mode waveguides and can enhance the beam quality of a fiber laser by adaptively controlling the optical parameters (amplitude, phase, polarization) at the input. In this work, we combined the gains and losses of individual modes within the fiber amplifier and introduced a mode content parameter at the amplifier's output as an evaluation function to simulate mode control effects. Mode competition within the gain fiber can degrade the control effect of the fundamental mode and lead to it taking a longer time for the control to converge.
View Article and Find Full Text PDFWe designed and fabricated terminated polymer waveguides with low coupling loss to a standard single-mode fiber (SSMF) for 100 Gbps optical interconnects application and beyond. The mode field diameter of the polymer waveguide is designed to perfectly match that of the SSMF with a theoretical coupling loss as small as 0.07 dB.
View Article and Find Full Text PDFIn this work, a nested hollow-core anti-resonant fiber (HC-ARF) with an elliptical cladding for high-power lasers for 2 µm laser transmission was proposed and theoretically investigated. The dual-layer elliptical tubes nested within the fiber enable the low-loss single-mode transmission. The finite element method (FEM) was employed to analyze and optimize the structure of fiber, with a total loss of less than 5 × 10dB/m across the wavelength range of 1920nm to 2040nm.
View Article and Find Full Text PDFAstrophotonics aims to transfer photonic technology to the development of compact astronomical instruments. However, light coupling from a multimode fiber, typically adopted in modern observatories, to a single-mode photonic device still poses a challenge. Though a photonic lantern can enable this transition in a low-loss way, it requires that the number of single-mode fibers (SMFs) at the output is the same as the number of guided modes in the multimode fiber, resulting in a cumbersome fan-out of many single-mode devices to be connected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!