The characteristic biodegradation of monomeric styrene by Phanerochaete chrysosporium KFRI 20742, Trametes versicolor KFRI 20251 and Daldinia concentrica KFRI 40-1 was carried out to examine the resistance, its degradation efficiency and metabolites analysis. The estrogenic reduction effect of styrene by the fungi was also evaluated. The mycelium growth of fungi differentiated depending on the concentration levels of styrene. Additionally P. chrysosporium KFRI 20742 showed superior mycelium growth at less than 200 mg/l, while D. concentrica KFRI 40-1 was more than 200 mg/l. The degradation efficiency reached 99% during one day of incubation for all the fungi. Both manganese-dependent peroxidase and laccase activities in liquid medium were the highest at the initial stage of incubation, whereas the lowest was after the addition of styrene. However, both activities were gradually recovered after. The major metabolites of styrene by P. chrysosporium KFRI 20742 were 2-phenyl ethanol, benzoic acid, cyclohexadiene-1,4-dione, butanol and succinic acid. From one to seven days of incubating the fungi, the expression of pS2 mRNA widely known as an estrogen response gene was decreased down to the level of baseline after one day. Also, the estrogenic effect of styrene completely disappeared after treatment with supernatant of P. chrysosporium KFRI 20742 from one week of culture down to the levels of vehicle.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!