The HOX 2.2 homeobox gene is expressed in human hematopoietic cell lines with erythroid features (W.-F. Shen, et al, Proc. Natl. Acad. Sci. 86, 8536-8540, 1989). Both human and murine Hox 2.2 genes contain a single 1 kb intron which interrupts the sequence encoding the proposed homeobox protein. Four human erythroleukemia cell lines express the spliced, homeobox-coding transcript as the major form of message, and variable low amounts of unspliced HOX 2.2 mRNAs. Murine embryonic tissues and adult kidney and uterus contain approximately equal amounts of transcripts containing this intron and mRNAs from which the intron has been excised. The spliced transcript encodes a 224 amino acid homeobox protein, while the unspliced transcript would potentially encode a 140 residue protein containing the same N-terminal sequence but lacking the homeodomain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC333645 | PMC |
http://dx.doi.org/10.1093/nar/19.3.539 | DOI Listing |
BMC Biol
January 2025
Institute of Biology Leiden, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
Background: Regeneration is the replacement of lost or damaged tissue with a functional copy. In axolotls and zebrafish, regeneration involves stem cells produced by de-differentiation. These cells form a growth zone which expresses developmental patterning genes at its apex.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopaedics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, China.
Osteosarcoma (OS) is a prevalent invasive bone cancer, with numerous homeobox family genes implicated in tumor progression. This study aimed to develop a prognostic model using HOX family genes to assess osteosarcoma patient outcomes. Data from osteosarcoma patients in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts were collected.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Yale Center of Molecular and Cellular Oncology, Yale University, New Haven, CT, USA.
Spatial transcriptomic tools are an upcoming and powerful way to investigate targeted gene expression patterns within tissues. These tools offer the unique advantage of visualizing and understanding gene expression while preserving tissue integrity, thereby maintaining the spatial context of genes. Curio is a robust spatial transcriptomic tool that facilitates high throughput comprehensive spatial gene expression analysis across the entir e transcriptome with high efficiency.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Integrative Biology and Physiology, Medical School, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.
Homeobox genes (HOX), the master regulators, deploy a unique set of target genes to coordinate and orchestrate the spatiotemporal development of an organism. HOX encoded transcriptional factors regulate the expression of target genes by binding to the specific sequences on the genome. Chromatin Immunoprecipitation (ChIP) and Chromatin Immunoprecipitation with Sequencing (ChIP-Seq) are widely used to map and understand specific gene locus and global regulatory regions on the genome.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT, USA.
Electrophoretic Mobility Shift Assay (EMSA) is a powerful technique for studying nucleic acid and protein interactions. This technique is based on the principle that nucleic acid-protein complex and nucleic acid migrate at different rates due to differences in size and charge. Nucleic acid and protein interactions are fundamental to various biological processes, such as gene regulation, replication, transcription, and recombination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!