Food restricted schedules promote differential lipoperoxidative activity in rat hepatic subcellular fractions.

Comp Biochem Physiol A Mol Integr Physiol

Instituto de Neurobiología, Campus UNAM-Juriquilla, Querétaro, México.

Published: April 2007

Restricted access to food (from 12:00 to 14:00 h) produces a behavioral activation known as food anticipatory activity (FAA), which is a manifestation of the food entrained oscillator (FEO). Peripheral oscillators, especially in the liver, are thought to be part of the FEO. A variety of metabolic adaptations have been detected in the liver during the expression of this oscillator, including activation of mitochondrial respiration and changes in the cytoplasmic and mitochondrial redox states. Biological clocks are regulated by redox-sensitive factors. The present study explored the lipoperoxidative activity (LP) in the liver during the activity of the FEO. Conjugated dienes (CD) and thiobarbituric acid reactive substances (TBARS), with and without Fe2+-supplementation, were quantified in six subcellular fractions: whole homogenate, plasma membrane, mitochondria, microsomes, nucleus, and cytosol. The experimental protocol involved control groups of ad libitum fed and 24-h fasted rats, and groups under the restricted food schedule (RFS) which were sampled before FAA (08:00 h), during FAA (11:00 h) and after feeding (14:00 h). Clear differences in pro-oxidant activity was observed between ad libitum fed and 24-h fasted rats in almost all the subcellular fractions studied. RFS rats presented: CD levels more similar to the fasted rats, even at 14:00 h, after food presentation, and basal and Fe2+-supplemented TBARS levels tended to be lower than both controls, suggesting an increased antioxidant capacity associated with food restriction. In addition, a microarray analysis showed that several isoforms of peroxiredoxins, a family of antioxidant and hydrogen peroxide-catabolizing enzymes, were consistently up-regulated in each and every condition in which RFS was applied. Together, these data indicate a rheostatic adaptation of the liver in the handling of pro-oxidant reactions during the activity of the FEO.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2006.02.039DOI Listing

Publication Analysis

Top Keywords

subcellular fractions
12
fasted rats
12
lipoperoxidative activity
8
activity feo
8
libitum fed
8
fed 24-h
8
24-h fasted
8
food
7
activity
6
food restricted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!