The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is considered as a major antigen for vaccine design. We previously demonstrated that the receptor-binding domain (RBD: residues 318-510) of S protein contains multiple conformation-dependent neutralizing epitopes (Conf I to VI) and serves as a major target of SARS-CoV neutralization. Here, we further characterized the antigenic structure in the RBD by a panel of novel mAbs isolated from the mice immunized with an inactivated SARS-CoV vaccine. Ten of the RBD-specific mAbs were mapped to four distinct groups of conformational epitopes (designated Group A to D), and all of which had potent neutralizing activity against S protein-pseudotyped SARS viruses. Group A, B, C mAbs target the epitopes that may overlap with the previously characterized Conf I, III, and VI respectively, but they display different capacity to block the receptor binding. Group D mAb (S25) was directed against a unique epitope by its competitive binding. Two anti-RBD mAbs recognizing the linear epitopes (Group E) were mapped to the RBD residues 335-352 and 442-458, respectively, and none of them inhibited the receptor binding and virus entry. Surprisingly, most neutralizing epitopes (Groups A to C) could be completely disrupted by single amino acid substitutions (e.g., D429A, R441A or D454A) or by deletions of several amino acids at the N-terminal or C-terminal region of the RBD; however, the Group D epitope was not sensitive to the mutations, highlighting its importance for vaccine development. These data provide important information for understanding the antigenicity and immunogenicity of SARS-CoV, and this panel of novel mAbs can be used as tools for studying the structure of S protein and for guiding SARS vaccine design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115380PMC
http://dx.doi.org/10.1016/j.vaccine.2006.04.054DOI Listing

Publication Analysis

Top Keywords

neutralizing epitopes
12
receptor-binding domain
8
spike protein
8
inactivated sars-cov
8
sars-cov vaccine
8
vaccine design
8
rbd residues
8
panel novel
8
novel mabs
8
receptor binding
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!