For studies of motor neuron function or for therapeutic purposes, novel pseudotype HIV-1-based vectors were developed that are capable of expressing transgenes in motor neurons following injection into mouse hind limb muscles. To specifically target motor neurons, glycoproteins from two rabies virus (RV) isolates, the mouse-brain adapted challenge virus 24 (CVS-24) variants, CVS-N2c and CVS-B2c were evaluated for pseudotype formation with an HIV-1-based vector. Both RV glycoproteins incorporated into vector envelopes, and both pseudotypes yielded high titers with Hek293T and cortical plate neuron cultures. Increased neuronotropism by the CVS-N2c pseudotype was not observed, suggesting that vector tropism is not solely determined by the fusogenic viral glycoprotein. Vector injection into hind limb muscles resulted in EYFP reporter gene expression in the injected muscle fibers and in spinal cord motor neurons innervating the same muscle, indicating retrograde vector transport. Intramuscular vector injections into the soleus and tibialis anterior muscles transduced 26% and 16% of all motor neurons in each motor nucleus, respectively. These transduction efficiencies may allow novel approaches to functional studies of the motor system and the treatment of neuromuscular disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2006.04.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!