Thiazolidinediones (TZDs), which were known as novel insulin-sensitizing antidiabetic agents, have been reported to inhibit the acceleration of atherosclerotic lesions. Macrophages play important roles in the development of atherosclerosis. We previously reported that oxidized low-density lipoprotein (Ox-LDL) induces macrophage proliferation through ERK1/2-dependent GM-CSF production. In the present study, we investigated the effects of two TZDs, troglitazone and ciglitazone on Ox-LDL-induced macrophage proliferation. Troglitazone significantly inhibited Ox-LDL-induced increases in [(3)H]thymidine incorporation into and proliferation of mouse peritoneal macrophages, whereas ciglitazone had no effects. Troglitazone and ciglitazone both significantly induced PPARgamma activity, suggesting that the inhibitory effect of troglitazone was not mediated by PPARgamma. Ox-LDL-induced production of GM-CSF was significantly inhibited by troglitazone, but not by ciglitazone. Troglitazone inhibited Ox-LDL-induced production of intracellular reactive oxygen species, whereas ciglitazone had no effect. The antioxidant reagents NAC and NMPG each inhibited phosphorylation of ERK1/2, whereas troglitazone and ciglitazone had no effects. However, troglitazone, NAC and NMPG all inhibited nuclear translocation of ERK1/2. In conclusion, troglitazone inhibited Ox-LDL-induced GM-CSF production by suppressing nuclear translocation of ERK1/2, thereby inhibiting macrophage proliferation. This suppression of macrophage proliferation by troglitazone may, at least in part, explain its antiatherogenic effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.atherosclerosis.2006.04.022DOI Listing

Publication Analysis

Top Keywords

macrophage proliferation
20
troglitazone ciglitazone
16
nuclear translocation
12
translocation erk1/2
12
troglitazone inhibited
12
inhibited ox-ldl-induced
12
troglitazone
11
oxidized low-density
8
gm-csf production
8
proliferation troglitazone
8

Similar Publications

An antibacterial and antioxidant rosmarinic acid hydrogel normalizes macrophage polarization to expedite diabetic wound healing.

J Colloid Interface Sci

December 2024

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China. Electronic address:

The management of diabetic wounds (DW) is a significant challenge within the medical field. Effectively regulating the levels of reactive oxygen species (ROS) at the wound site and orchestrating the inflammatory response are effective strategies for DW treatment. In this study, a novel hydrogel was developed by cross-linking polyboronic acid-modified carboxymethyl chitosan with herbal active ingredient rosmarinic acid (RA), an active herbal ingredient, through dynamic boronic esters formation.

View Article and Find Full Text PDF

To investigate CHD1L's impacts and molecular processes in hypoxic cutaneous squamous cell carcinoma. Monoclonal proliferation assays and CCK-8 were used to detect the proliferation capacity of A431 cells and Colon16 cells; wound healing experiments and Transwell assays were used to examine the migration and invasion capacity of A431 cells and Colon16 cells; angiogenesis experiments were conducted to assess the influence of A431 cells on angiogenesis; a nude mouse tumor xenograft experiment and HE staining were utilized to evaluate the impact of CHD1L on the progression of cutaneous squamous cell carcinoma; western blot analysis was performed to detect the expression of p-PI3K, p-AKT, and PD-L1 in A431 cells, as well as CD9, TSG101, PD-L1 in exosomes, and CD206, Arginase-1, iNOS, IL-1β, p-AKT, p-mTOR, VEGF, COX-2, MMP2, MMP9, p-ERK1/2 in tumor-associated macrophages. Under hypoxic conditions, CHD1L promoted the proliferation, migration, invasion, and angiogenesis of cutaneous squamous cell carcinoma.

View Article and Find Full Text PDF

Background: Hypoxia can affect the occurrence and development of inflammation in humans, but its effects on the disease progression of osteoarthritis (OA) remain unclear. Synovial macrophages play an essential role in the progression of arthritis. Specifically, the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) in macrophages induces the secretion of a series of inflammatory factors, accelerating the progression of OA.

View Article and Find Full Text PDF

Upregulation of haematopoetic cell kinase (Hck) activity by a secreted parasite effector protein (Ta9) drives proliferation of Theileria annulata-transformed leukocytes.

Microb Pathog

December 2024

Freie Universität Berlin, Institute for Parasitology and Tropical Veterinary Medicine, Berlin, Germany; Freie Universität Berlin, Veterinary Centre for Resistance Research, Berlin, Germany. Electronic address:

Reversible transformation of bovine leukocytes by the intracellular parasites Theileria annulata and Theileria parva is central to pathogenesis of the diseases they cause, tropical theileriosis and East Coast Fever, respectively. Parasite-dependent constitutive activation of major host transcription factors such as AP-1 (Activating Protein 1) and NF-κB (Nuclear Factor-Kappa B) sustains the transformed state. Although parasite interaction with host cell signaling pathways upstream of AP-1 have been studied, the precise contribution of Theileria encoded factors capable of modulating AP-1 transcriptional activity, and other infection-altered signaling pathways is not fully understood.

View Article and Find Full Text PDF

Spatiotemporal single-cell roadmap of human skin wound healing.

Cell Stem Cell

December 2024

Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden. Electronic address:

Wound healing is vital for human health, yet the details of cellular dynamics and coordination in human wound repair remain largely unexplored. To address this, we conducted single-cell multi-omics analyses on human skin wound tissues through inflammation, proliferation, and remodeling phases of wound repair from the same individuals, monitoring the cellular and molecular dynamics of human skin wound healing at an unprecedented spatiotemporal resolution. This singular roadmap reveals the cellular architecture of the wound margin and identifies FOSL1 as a critical driver of re-epithelialization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!