CooA, the only protein known to employ proline as a heme ligand, is a CO-activated transcription factor found in the bacterium Rhodospirillum rubrum. Proline is a heme ligand in both the Fe(III) and Fe(II) states; the sixth ligand is cysteinate in Fe(III) CooA and histidine in Fe(II) CooA. When CO binds to Fe(II) CooA, it selectively replaces the proline ligand, activating the protein. The proposed roles of proline are to stabilize the heme pocket during the redox-mediated ligand switch and to form a weak metal-ligand bond that is preferentially cleaved to bind CO. To explore this latter proposal, binding affinity, structural, and density functional theory computational studies were performed using pyrrolidine and 2-methylpyrrolidine as analogs of proline, and imidazole as an analog of histidine. Measurement of the binding properties of these amino acid analogs in two different protein environments, CooA variant deltaP3R4 and myoglobin, revealed that CooA is tailored to accept the bulky proline ligand. Furthermore, the high pKa of proline facilitates selective replacement by CO. Model metalloporphyrin X-ray and computational structures suggest that the key factor leading to lengthening of the Fe-ligand bond and decreased binding affinity is steric hindrance at the C-2 position of the pyrrolidine ring. These data afford a more complete understanding of how CooA utilizes the weak proline ligand to direct CO to the distal position, thus ensuring selective retention of the histidine ligand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00775-006-0115-8 | DOI Listing |
Sci Rep
January 2025
Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, Karnataka, 580009, India.
In oxygen-deprived conditions, cells respond by activating adaptive mechanisms to bolster their survival and protect tissue integrity. A key player in this process is the HIF-1α signaling cascade, meticulously regulated by Prolyl Hydroxylase Domain 2 (PHD2), which orchestrates cellular responses to varying oxygen levels. The primary aim of this investigation is to utilize gut siderophores as inhibitors of PHD2 in ischemic conditions.
View Article and Find Full Text PDFJ Org Chem
December 2024
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
Here, we demonstrated a copper(II)-catalyzed enantioselective addition of aryl amines to isatin-derived -Boc-ketimines using chiral O-N-N tridentate ligands derived from BINOL and proline. Generally, the chiral acyclic ,'-ketals were obtained in high yields (up to 98%) and excellent ee values (up to 98%). Various aryl amines could be tolerated and a gram-scale reaction was also possible.
View Article and Find Full Text PDFBioconjug Chem
December 2024
Philochem AG, R&D Department, CH-8112 Otelfingen, Switzerland.
OncoFAP is an ultrahigh affinity ligand of fibroblast activation protein (FAP), a tumor-associated antigen overexpressed in the stroma of the majority of solid tumors. OncoFAP has been previously implemented as a tumor-homing moiety for the development of small molecule drug conjugates (SMDCs). In the same context, the glycine--proline dipeptide was included with the aim to selectively undergo cleavage only in the presence of the target FAP, triggering the consequent release of the cytotoxic payload in the tumor microenvironment.
View Article and Find Full Text PDFFront Mol Biosci
December 2024
Department of Chemistry, Western Washington University, Bellingham, WA, United States.
Cellular signaling networks are modulated by multiple protein-protein interaction domains that coordinate extracellular inputs and processes to regulate cellular processes. Several of these domains recognize short linear motifs, or SLiMs, which are often highly conserved and are closely regulated. One such domain, the Src homology 3 (SH3) domain, typically recognizes proline-rich SLiMs and is one of the most abundant SLiM-binding domains in the human proteome.
View Article and Find Full Text PDFBiopolymers
January 2025
Department of Chemistry, Faculty of Engineering and Science, Bursa Technical University, Bursa, Turkey.
Cellulose is one of the most abundant biopolymers in nature. Despite being the subject of research in various fields, it is not as famous as chitosan in catalyst design. Herein, a novel thiourea-functionalized cellulose (CTU-6) was synthesized as a robust hydrogen bonding catalyst with the degree of substitution (DS) of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!