Gatifloxacin (GAT) is a new 8-methoxy fluoroquinolone with enhanced activity against gram-positive cocci. Its activity was studied in an in vitro pharmacokinetic-pharmacodynamic model against five Staphylococcus aureus strains, either susceptible to ciprofloxacin or exhibiting various levels and mechanisms of ciprofloxacin (CIP) resistance: the ATCC 25923 reference strain (MICs of CIP and GAT: 0.5 and 0.1 microg/ml, respectively), its efflux mutant SA-1 (16 and 0.5 microg/ml; mutation in the norA promoter region), and three clinical strains, Sa2102 (2 and 0.2 microg/ml), Sa2667 (4 and 0.5 microg/ml), and Sa2669 (16 and 1 microg/ml), carrying mutations in the grlA (Ser80Tyr or Phe) and gyrA (Ser84Ala) quinolone resistance-determining regions (QRDRs) for Sa2669. Plasmatic pharmacokinetic profiles after daily 1-h perfusion of 400 mg for 48 h were accurately simulated. Thus, mean maximum concentration of drug in serum values for the two administration intervals were 5.36 and 5.80 microg/ml, respectively, and the corresponding half-life at beta-phase values were 8.68 and 7.80 h (goodness of fit coefficient, >0.98). Therapeutic concentrations of GAT allowed the complete eradication of the susceptible strain within 12 h (difference between the bacterial counts at the beginning of the treatment and at a defined time: -2.18 at the 1-h time point [t(1)] and -6.80 at t(24) and t(48); the bacterial killing and regrowth curve from 0 to 48 h was 30.2 h x log CFU/milliliter). However, mutants (M) with GAT MICs increased by 4- to 40-fold were selected from the other strains. They acquired mutations either supplementary (MSa2102 and MSa2667) or different (Ala84Val for MSa2669) in gyrA or in both gyrA and grlA QRDRs (MSA-1). MSa2667 additionally overproduced efflux system(s) without norA promoter modification. Thus, GAT properties should allow the total elimination of ciprofloxacin-susceptible S. aureus, but resistant mutants might emerge from strains showing reduced susceptibility to older fluoroquinolones independently of the first-step mutation(s).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1479150PMC
http://dx.doi.org/10.1128/AAC.01586-05DOI Listing

Publication Analysis

Top Keywords

vitro pharmacokinetic-pharmacodynamic
8
pharmacokinetic-pharmacodynamic model
8
model staphylococcus
8
staphylococcus aureus
8
aureus strains
8
strains susceptible
8
susceptible ciprofloxacin
8
ciprofloxacin exhibiting
8
exhibiting levels
8
levels mechanisms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!