To gain insight into the synergistic control of hand muscles, we have recently quantified the strength of correlated neural activity across motor units from extrinsic digit flexors during a five-digit object-hold task. We found stronger synchrony and coherence across motor units from thumb and index finger flexor muscle compartment than between the thumb flexor and other finger flexor muscle compartments. The present study of two-digit object hold was designed to determine the extent to which such distribution of common input among thumb-finger flexor muscle compartments, revealed by holding an object with five digits, is preserved when varying the functional role of a given digit pair. We recorded normal force exerted by the digits and electrical activity of single motor units from muscle flexor pollicis longus (FPL) and two compartments of the m. flexor digitorum profundus (FDP2 and FDP3; index and middle finger, respectively). Consistent with our previous results from five-digit grasping, synchrony and coherence across motor units from FPL-FDP2 was significantly stronger than in FPL-FDP3 during object hold with two digits [common input strength: 0.49 +/- 0.02 and 0.35 +/- 0.02 (means +/- SE), respectively; peak coherence: 0.0054 and 0.0038, respectively]. This suggests that the distribution of common neural input is muscle-pair specific regardless of grip type. However, the strength of coherence, but not synchrony, was significantly stronger in two- versus five-digit object hold for both muscle combinations, suggesting the periodicity of common input is sensitive to grip type.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2018607 | PMC |
http://dx.doi.org/10.1152/jn.00327.2006 | DOI Listing |
J Biomech
January 2025
Laboratoire de Simulation et Modélisation du Mouvement, Université de Montréal, Montréal, QC, Canada. Electronic address:
In trampolining, optimizing body orientation during landing reduces injury risk and enhances performance. As trampolinists are subject to motor variability, anticipatory inflight corrections are necessary to regulate their body orientation before landing. We investigated the evolution of a) body orientation and b) limb position (i.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico.
Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait events: foot-strike (FS) and foot-off (FO).
View Article and Find Full Text PDFEur J Trauma Emerg Surg
January 2025
Liverpool Orthopaedic and Trauma Service, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom.
Background: Midfoot fractures in polytrauma patients are often an underappreciated injury relative to their other major injuries sustained. In this study, our aim was to explore the mechanisms and patterns of injury in polytrauma related midfoot fractures as compared to single limb injuries.
Setting: Multicentre observational study.
JAMA Netw Open
January 2025
Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora.
Importance: A recent advisory from the American Heart Association delineated the potential benefits of developmental care for hospitalized children with congenital heart disease (CHD) and a critical gap in research evaluating the association of such inpatient programs with neurodevelopmental outcomes.
Objective: To investigate associations between the Cardiac Inpatient Neurodevelopmental Care Optimization (CINCO) program interventions, delirium, and neurodevelopment in young children (newborn through age 2 years) hospitalized with CHD.
Design, Setting, And Participants: This cohort study used quality improvement data from inpatient cardiac units at a tertiary care children's hospital in the US.
Exp Brain Res
January 2025
Dept. of Neurosurgery, Upstate Medical University, 750 E. Adams St, Syracuse, NY, 13210, USA.
Transcranial magnetic stimulation (TMS) has been used for many years to study the pathophysiology of amyotrophic lateral sclerosis (ALS). Based on single- or dual-pulse TMS and EMG and/or single motor unit (MU) recordings, many groups have described a loss of central inhibition as an early marker of ALS dysfunction, reflecting a state of cortical 'hyperexcitability'. This conclusion is not without its detractors, however, leading us to reexamine this issue using 4-pulse TMS, shown previously to be more effective for testing central motor pathway functional integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!