Comparison of effector-specific signals in frontal and parietal cortices.

J Neurophysiol

Department of Psychology, Case Western Reserve University, Cleveland, OH 44106, USA.

Published: September 2006

We previously demonstrated that the activities of neurons in the lateral intraparietal area (LIP) and the parietal reach region (PRR) of the posterior parietal cortex (PPC) are modulated by nonspatial effector-specific information. We now report similar modulation in FEF, an area of frontal cortex that is reciprocally connected with LIP. Although it is possible that these effector-specific signals originate in LIP and are conveyed to FEF, it is also possible that these signals originate in FEF and are "fed back" to LIP. We found that signal magnitude was no larger, and onset time no earlier, in FEF compared with LIP. Moreover, effector-specific activity in FEF, but not in LIP, was largely driven by spatial prediction. These results suggest that the saccade-related effector-specific signals found in LIP do not originate in FEF. Conversely, LIP may contribute to the effector-specific signals found in FEF, but does not wholly account for them.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.01368.2005DOI Listing

Publication Analysis

Top Keywords

effector-specific signals
16
lip
8
lip effector-specific
8
signals originate
8
originate fef
8
fef
7
signals
5
effector-specific
5
comparison effector-specific
4
signals frontal
4

Similar Publications

Real-world implementation of brain-computer interfaces (BCIs) for continuous control of devices should ideally rely on fully asynchronous decoding approaches. That is, the decoding algorithm should continuously update its output by estimating the user's intended actions from real-time neural activity, without the need for any temporal alignment to an external cue. This kind of open-ended temporal flexibility is necessary to achieve naturalistic and intuitive control.

View Article and Find Full Text PDF

Development of an Effector-Specific Stop Signal Task with Higher Complexity: A Proof-of-Concept Study.

J Mot Behav

January 2025

Department of Sport & Health, Exercise Science & Neuroscience Unit, Paderborn University, Paderborn, Germany.

The present study aims to develop and present a proof-of-concept for a stop signal task with effector-specificity and higher complexity. Sixteen participants performed a stop signal task developed for lower extremities using Fitlight System™. The effect of four different delays and two sessions on response time, stop signal reaction time and accuracy was assessed using two-way repeated-measures ANOVA.

View Article and Find Full Text PDF

Inhibitory control is a crucial cognitive-control ability for behavioral flexibility that has been extensively investigated through action-stopping tasks. Multiple neurophysiological features have been proposed to represent 'signatures' of inhibitory control during action-stopping, though the processes signified by these signatures are still controversially discussed. The present study aimed to disentangle these processes by comparing simple stopping situations with those in which additional action revisions were needed.

View Article and Find Full Text PDF

Limbic encephalitis (LE) due to anti-leucine-rich glioma-inactivated 1 (LGI1) antibodies is an autoimmune disease characterized by distinct clinical features unique to LGI1 LE, such as faciobrachial dystonic seizures. However, it is unclear whether an additional disease-related LGI1 antigen-specific T cell response is involved in the pathogenesis of this disease. To address this question, we studied the effect of recombinant LGI1 on the proliferation and effector-specific cytokine production (IFN-γ, IL-5, IL-10, and IL-17) of peripheral blood mononuclear cells (PBMCs) from patients with LGI1 LE and healthy controls.

View Article and Find Full Text PDF

Sensory information received through sensory organs is constantly modulated by numerous non-sensory factors. Recent studies have demonstrated that the state of action can modulate sensory representations in cortical areas. Similarly, sensory information can be modulated by the type of action used to report perception; however, systematic investigation of this issue is scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!