The mutual sensitization of the oxidation of NO and a natural gas blend (methane-ethane 10:1) was studied experimentally in a fused silica jet-stirred reactor operating at 10 atm, over the temperature range 800-1160 K, from fuel-lean to fuel-rich conditions. Sonic quartz probe sampling followed by on-line FTIR analyses and off-line GC-TCD/FID analyses were used to measure the concentration profiles of the reactants, the stable intermediates, and the final products. A detailed chemical kinetic modeling of the present experiments was performed yielding an overall good agreement between the present data and this modeling. According to the proposed kinetic scheme, the mutual sensitization of the oxidation of this natural gas blend and NO proceeds through the NO to NO2 conversion by HO2, CH3O2, and C2H5O2. The detailed kinetic modeling showed that the conversion of NO to NO2 by CH3O2 and C2H5O2 is more important at low temperatures (ca. 820 K) than at higher temperatures where the reaction of NO with HO2 controls the NO to NO2 conversion. The production of OH resulting from the oxidation of NO by HO2, and the production of alkoxy radicals via RO2 + NO reactions promotes the oxidation of the fuel. A simplified reaction scheme was delineated: NO + HO2 --> NO2 + OH followed by OH + CH4 --> CH3 + H2O and OH + C2H6 --> C2H5 + H2O. At low-temperature, the reaction also proceeds via CH3 + O2 (+ M) --> CH3O2 (+ M); CH3O2 + NO --> CH3O + NO2 and C2H5 + O2 --> C2H5O2; C2H5O2 + NO --> C2H5O + NO2. At higher temperature, methoxy radicals are produced via the following mechanism: CH3 + NO2 --> CH3O + NO. The further reactions CH3O --> CH2O + H; CH2O + OH --> HCO + H2O; HCO + O2 --> HO2 + CO; and H + O2 + M --> HO2 + M complete the sequence. The proposed model indicates that the well-recognized difference of reactivity between methane and a natural gas blend is significantly reduced by addition of NO. The kinetic analyses indicate that in the NO-seeded conditions, the main production of OH proceeds via the same route, NO + HO2 --> NO2 + OH. Therefore, a significant reduction of the impact of the fuel composition on the kinetics of oxidation occurs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp054535w | DOI Listing |
Sci Rep
January 2025
College of Environment and Bioengineering, Henan University of Engineering, Zhengzhou, 451191, China.
This study aims to explore the mechanism behind the influence of stress on gas adsorption by coal during deep mining and improve the accuracy of gas disaster prevention and control. To achieve this aim, thermodynamic analysis was conducted on the process of gas adsorption by loaded coal, and modified thermodynamic model proposed by previous scholars. It is found that stress plays an important role in gas adsorption by coal.
View Article and Find Full Text PDFSci Rep
January 2025
College of Ecology and Environment, Hainan University, Haikou, 570228, China.
Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.
View Article and Find Full Text PDFNat Commun
January 2025
Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.
View Article and Find Full Text PDFWater Res
January 2025
College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China. Electronic address:
Anaerobic digestion (AD) is a biological process in which anaerobic microorganisms convert organic matter into methane-rich gas, contributing to the cycling of carbon and other nutrients. Quorum sensing (QS), a microbial communication mechanism, plays a critical role in regulating population-level behaviors within AD systems. This review systematically examines the roles and applications of QS in AD, emphasizing its importance in enhancing process efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!