The motivation for the present study comes from the preceding paper where it is suggested that accepted rate constants for OH + NO2 --> NO + HO2 are high by approximately 2. This conclusion was based on a reevaluation of heats of formation for HO2, OH, NO, and NO2 using the Active Thermochemical Table (ATcT) approach. The present experiments were performed in C2H5I/NO2 mixtures, using the reflected shock tube technique and OH-radical electronic absorption detection (at 308 nm) and using a multipass optical system. Time-dependent profile decays were fitted with a 23-step mechanism, but only OH + NO2, OH + HO2, both HO2 and NO2 dissociations, and the atom molecule reactions, O + NO2 and O + C2H4, contributed to the decay profile. Since all of the reactions except the first two are known with good accuracy, the profiles were fitted by varying only OH + NO2 and OH + HO2. The new ATcT approach was used to evaluate equilibrium constants so that back reactions were accurately taken into account. The combined rate constant from the present work and earlier work by Glaenzer and Troe (GT) is k(OH+NO2) = 2.25 x 10(-11) exp(-3831 K/T) cm3 molecule(-1) s(-1), which is a factor of 2 lower than the extrapolated direct value from Howard but agrees well with NO + HO2 --> OH + NO2 transformed with the updated equilibrium constants. Also, the rate constant for OH + HO2 suitable for combustion modeling applications over the T range (1200-1700 K) is (5 +/- 3) x 10(-11) cm3 molecule(-1) s(-1). Finally, simulating previous experimental results of GT using our updated mechanism, we suggest a constant rate for k(HO2+NO2) = (2.2 +/- 0.7) x 10(-11) cm3 molecule(-1) s(-1) over the T range 1350-1760 K.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp057461xDOI Listing

Publication Analysis

Top Keywords

cm3 molecule-1
12
molecule-1 s-1
12
ho2
9
reflected shock
8
shock tube
8
rate constants
8
no2
8
constants no2
8
no2 -->
8
--> ho2
8

Similar Publications

Rate coefficients for the reaction of CH with CHO were measured for the first time over the temperature range of 37-603 K, with the CH radicals produced by pulsed laser photolysis and detected by CH radical chemiluminescence following their reaction with O. The low temperature measurements (≤93 K) relevant to the interstellar medium were made within a Laval nozzle gas expansion, while higher temperature measurements (≥308 K) were made within a temperature controlled reaction cell. The rate coefficients display a negative temperature dependence below 300 K, reaching (1.

View Article and Find Full Text PDF

The oxidation of CHCO by (Δ) O has been investigated by means of high level quantum chemical and chemical kinetic calculations. The reaction was found to proceed through a four-membered cyclic transition state resulting from the addition of O to the CC bond of ketene. The reaction energetics has been calculated employing post-CCSD(T) corrections.

View Article and Find Full Text PDF

Elementary reactions for glycine production in hot and dense interstellar media from , HCOOH, and .

J Mol Model

December 2024

Departamento de Física, Instituto Tecnológico de Aeronáutica, São José dos Campos, 12228-900, SP, Brazil.

Context: In this work, we investigate three elementary reactions involved in the production of glycine in the interstellar medium (ISM) employing trustworthy electronic structure and chemical kinetics methodologies. We considered three elementary reactions: ( ), ( ) and ( ) under conditions consistent with hot molecular cores of massive star-forming regions. Our results indicate that the elementary reactions are feasible in these environments, with reaction barriers of 18.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations of the collisional dynamics of the coronene-acepyrene and coronene radical-acepyrene pairs have been carried out to investigate the size effect of monomers of polycyclic aromatic hydrocarbons (PAH) on their non-equilibrium dimerization. The results compared to the previous MD simulations of the smaller pyrene-acepyrene and pyrenyl-acepyrene systems corroborate the non-equilibrium hypothesis of crosslinking PAH dimerization enhanced by physical interaction between the monomers. The phenomenon of inelastic collisional dynamics responsible for non-equilibrium van der Waals dimerization, which fosters a covalent bond formation between the monomers, amplifies with increasing PAH size.

View Article and Find Full Text PDF

Atmospheric reaction of CH=CHCHOCFCHF with OH radicals and Cl atoms, UV and IR absorption cross sections, and global warming potential.

Environ Sci Pollut Res Int

December 2024

Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela, 1B, 13071, Ciudad Real, Spain.

In this work, the rate coefficients for OH radical, k(T), and Cl atom, k(T), reaction with allyl 1,1,2,2-tetrafluoroethyl ether, CH=CHCHOCFCHF, were studied as a function of temperature and pressure in a collaborative effort made between UCLM, Spain, and LAPKIN, Greece. OH rate coefficients were determined in UCLM, between 263 and 353 K and 50-600 Torr, using the absolute rate method of pulsed laser photolysis-laser-induced fluorescence technique, while Cl kinetics were studied in temperature (260-363 K) and pressure (34-721 Torr) ranges, using the relative rate method of the thermostated photochemical reactor equipped with Fourier transform infrared spectroscopy as the detection technique. In both OH and Cl reactions, a negative temperature dependence of the measured rate coefficients was observed, which is consistent with complex association reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!