Diacylglycerol lactones (DAG-lactones) are known to operate as effective agonists of protein kinase C (PKC), surpassing in potency the activity of natural diacylglycerol (DAG). Localization of activated PKC isozymes in the cell is determined in part by the different cellular scaffolds, the lipid composition of the specific membranes, and the targeting information intrinsic to the individual isoforms bound to DAG. This multifaceted control of diversity suggests that, to develop effective DAG-lactones capable of honing in on a specific cellular target, we need to gain a better understanding of the chemical space surrounding its binding site. Seeking to augment the chemical repertoire of DAG-lactone side chains that could steer the translocation of PKC to specific cellular domains, we report herein the effects of incorporating simple or substituted phenyl residues. A combined series of n-alkyl and phenyl substitutions were used to explore the optimal location of the phenyl group on the side chains. The substantial differences in binding affinity between DAG-lactones with identical functionalized phenyl groups at either the sn-1 or sn-2 position are consistent with the proposed binding model in which the DAG-lactone binds to the C1 domain of PKC with the acyl chain oriented toward the interior of the membrane and the alpha-alkylidene or alpha-arylalkylidene chains directed to the surface of the C1 domain adjacent to the lipid interface. We conclude that DAG-lactones containing alpha-phenylalkylidene side chains at the sn-2 position represent excellent scaffolds upon which to explore further chemical diversity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm060011o | DOI Listing |
Biomol NMR Assign
January 2025
CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
In Arabidopsis thaliana, micro-RNA regulation is primarily controlled by DCL1, an RNase III enzyme, and its associated proteins. DCL1, together with DRB2, governs a specific group of miRNAs that induce the inhibition of target mRNA translation. DRB2 is a multi-domain protein containing two N-terminal dsRNA binding domains (dsRBD) separated by a linker, followed by an unstructured C-terminal tail.
View Article and Find Full Text PDFNat Mater
January 2025
Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany.
Nat Mater
January 2025
School of Chemistry, Beihang University, Beijing, China.
The rational design of non-fullerene acceptors (NFAs) with both high crystallinity and photoluminescence quantum yield (PLQY) is of crucial importance for achieving high-efficiency and low-energy-loss organic solar cells (OSCs). However, increasing the crystallinity of an NFA tends to decrease its PLQY, which results in a high non-radiative energy loss in OSCs. Here we demonstrate that the crystallinity and PLQY of NFAs can be fine-tuned by asymmetrically adapting the branching position of alkyl chains on the thiophene unit of the L8-BO acceptor.
View Article and Find Full Text PDFAm J Chin Med
January 2025
School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, P. R. China.
Ginkgolic acids (GAs) are distinctive secondary metabolites of () primarily found in its leaves and seeds, with the highest concentration located in the exotesta. GAs are classified as long-chain phenolic compounds, and exhibit structural similarities to lignoceric acid. Their structural diversity arises from variations in the length of side chains and their number of double bonds, resulting in six distinct forms within extracts (GBE).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan, Guangdong 523850, China; College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou, Hunan 423000, China. Electronic address:
Cultivated Chinese cordyceps, an optimal substitute for the endangered wild resource, has recently been produced on a large scale. This work sought to explore the structural features and immunomodulatory activity of a novel low-molecular-weight polysaccharide (CSP1a, 15.7 kDa) isolated from cultivated Chinese cordyceps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!