The enhanced biological phosphorus removal (EBPR) process is based on enriching the sludge with polyphosphate accumulating organisms (PAO) which are scarce in conventional non-EBPR wastewater treatment plant sludge. Hence, the start-up of EBPR systems (i.e. enriching the sludge with PAO) can be very slow and complex. A simulation study of a possible improvement of the start-up of an EBPR system in a sequencing batch reactor is presented in this work. The improvement is based on reducing the length of the aerobic phase so that it coincides with the depletion of orthophosphate from the medium. This improvement, though verified by simulation to be very successful, requires a good on-line orthophosphate sensor. To avoid this technical limitation, a link between oxygen uptake rate (OUR) measurements and orthophosphate presence is proposed. This link allows the control of the aerobic phase length with OUR as a measured variable and, consequently, a considerable improvement with respect to the conventional fixed aerobic phase length operation. An improvement of 95% in the ratio of PAO to heterotrophs and an increase of 30% in the final amount of PAO in sludge is achieved with this control strategy. The kinetic mod for simulations was a modification of the Activated Sludge Model 2d.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2006.130DOI Listing

Publication Analysis

Top Keywords

aerobic phase
16
start-up ebpr
12
phase length
12
ebpr system
8
control aerobic
8
simulation study
8
enriching sludge
8
sludge
5
improvement
5
improving start-up
4

Similar Publications

Ankle push-off is important for efficient, human-like walking, and many prosthetic devices mimic push-off using motors or elastic elements. The knee is extended throughout the stance phase and begins to buckle just before push-off, with timing being crucial. However, the exact mechanisms behind this buckling are still unclear.

View Article and Find Full Text PDF

Introduction And Objectives: Cardiopulmonary exercise testing (CPET) is the gold standard for quantifying aerobic functional capacity, yet it is costly and not widely available. The CLINIMEX Aerobic Fitness Questionnaire (C-AFQ) may be a practical alternative as it estimates oxygen consumption at peak exercise (VO peak) based on patients' responses to a list of activities with known energy requirements. However, its applicability in cardiac patients is unclear and has not yet been studied.

View Article and Find Full Text PDF

Rehabilitation is the process of helping people regain or improve lost or impaired function due to injury, illness, or disease. To assist in tracking the progress of patients undergoing rehabilitation, this paper proposes a lightweight graph-based deep-learning model for the automatic assessment of physical rehabilitation exercises. The model takes as input the 3D skeleton sequence of a patient performing a movement and outputs a continuous quality score, as a means for patient supervision that could complement or even substitute the need for ordinary clinical exams.

View Article and Find Full Text PDF

Knee exoskeletons have been developed to assist, stabilize, or improve human movement or recovery. However, exoskeleton designers must implement transparency (i.e.

View Article and Find Full Text PDF

Circadian clocks in the body drive daily cycles in physiology and behavior. A master clock in the brain maintains synchrony with the environmental day-night cycle and uses internal signals to keep clocks in other tissues aligned. Work in cell cultures uncovered cyclic changes in tissue oxygenation that may serve to reset and synchronize circadian clocks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!