AI Article Synopsis

  • Adipose tissue secretes biologically active proteins called adipokines, including leptin, adiponectin, and resistin, which affect bone metabolism.
  • Leptin promotes bone mineralization and adiponectin expression increases during osteoblast differentiation, while this study focuses on the role of resistin in bone metabolism.
  • Resistin was found in various bone cell types, influencing the differentiation of osteoclasts and stimulating cell proliferation, indicating its potential role in bone remodeling.

Article Abstract

The adipose tissue is the site of expression and secretion of a range of biologically active proteins, called adipokines, for example, leptin, adiponectin, and resistin. Leptin has previously been shown to be expressed in osteoblasts and to promote bone mineralization, whereas adiponectin expression is enhanced during osteoblast differentiation. In the present study we explored the possible role of resistin in bone metabolism. We found that resistin is expressed in murine preosteoclasts and preosteoblasts (RAW 264.7, MC3T3-E1), in primary human bone marrow stem cells and in mature human osteoblasts. The expression of resistin mRNA in RAW 264.7 was increased during differentiation and seemed to be regulated through PKC- and PKA-dependent mechanisms. Recombinant resistin increased the number of differentiated osteoclasts and stimulated NFkappaB promoter activity, indicating a role in osteoclastogenesis. Resistin also enhanced the proliferation of MC3T3-E1 cells in a PKA and PKC-dependent manner, but only weakly interfered with genes known to be upregulated during differentiation of MC3T3-E1 into osteoblasts. All together, our results indicate that resistin may play a role in bone remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.20915DOI Listing

Publication Analysis

Top Keywords

resistin
8
role bone
8
bone metabolism
8
raw 2647
8
bone
5
expression
4
expression regulation
4
regulation resistin
4
osteoblasts
4
resistin osteoblasts
4

Similar Publications

The hypothalamus integrates peripheral signals and modulates food intake and energy expenditure by regulating the metabolic function of peripheral tissues, including the liver and adipose tissue. In a previous study, we demonstrated that s-resistin, an intracellular resistin isoform highly expressed in the hypothalamus and upregulated during aging, is important in the central control of energy homeostasis, affecting mainly the peripheral response to insulin by still unknown mechanisms. Herein, using an intracerebroventricular injection of a specific lentiviral RNAi against s-resistin, we assessed, in the Wistar rat, the effects of central s-resistin downregulation on the expression and phosphorylation levels of intermediates involved in insulin signaling and the inflammatory response in epididymal white adipose tissue (eWAT) and liver.

View Article and Find Full Text PDF

Objectives: The study investigates the association of single nucleotide polymorphisms (SNP) in resistin gene (RETN) with resistin level, insulin resistance, and the risk of type 2 diabetes in an early diagnosed type 2 diabetic population of Iran.

Methods: The total of 80 healthy subjects and 80 individuals diagnosed with type 2 diabetes. To ascertain the genotypes of rs1862513 and rs3745367, we performed the polymerase chain reaction with restriction fragment length polymorphism (PCR-RFLP) technique.

View Article and Find Full Text PDF

The Influence of Body Composition, Lifestyle, and Dietary Components on Adiponectin and Resistin Levels and AR Index in Obese Individuals.

Int J Mol Sci

January 2025

Department of Human Immunology, Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszow, 35-959 Rzeszow, Poland.

Adipose tissue of obese people secretes a number of adipokines, including adiponectin and resistin, which have an antagonistic effect on the human metabolism, influencing the pathogenesis of many diseases based on low-grade inflammation. Body composition analysis using bioelectrical impedance analysis (BIA) was performed in 84 adults with obesity, i.e.

View Article and Find Full Text PDF

Maximal Intensity Exercise Induces Adipokine Secretion and Disrupts Prooxidant-Antioxidant Balance in Young Men with Different Body Composition.

Int J Mol Sci

January 2025

Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland.

Maximal physical effort induces a disturbance in the body's energy homeostasis and causes oxidative stress. The aim of the study was to determine whether prooxidant-antioxidant balance disturbances and the secretion of adipokines regulating metabolism, induced by maximal intensity exercise, are dependent on body composition in young, healthy, non-obese individuals. We determined changes in the concentration of advanced protein oxidation products (AOPP), markers of oxidative damage to nucleic acids (DNA/RNA/ox), and lipid peroxidation (LPO); catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity, as well as concentrations of visfatin, leptin, resistin, adiponectin, asprosin, and irisin in the blood before and after maximal intensity exercise in men with above-average muscle mass (NFAT-HLBM), above-average fat mass (HFAT-NLBM), and with average body composition (NFAT-NLBM).

View Article and Find Full Text PDF

Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by reduced platelet levels and heightened susceptibility to bleeding resulting from augmented autologous platelet destruction and diminished thrombopoiesis. Although antibody-mediated autoimmune reactions are widely recognized as primary factors, the precise etiological agents that trigger ITP remain unidentified. The pathogenesis of ITP remains unclear owing to the absence of comprehensive high-throughput data, except for the belated emergence of autoreactive antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!