Elevated numbers of endothelium-derived microparticles (EMPs) in the circulation are found in a variety of critical illnesses. EMPs have been associated with vascular dysfunction, including thrombotic complications and loss of normal vascular reactivity, common responses associated with cardiac valve injury. However, the exact mechanisms of this dysfunction and the potential impact on cardiac endothelium are unknown. We hypothesize that pathologic levels of circulating EMPs negatively regulate proliferation and migration of valvular endothelial cells (ECs), leading to downstream endothelial dysfunction. EMPs were generated from plasminogen activation inhibitor 1-stimulated human umbilical vein endothelial cells (HUVECs). Human mitral valve endothelial cells (HMVECs) were isolated and characterized by platelet endothelial cell-derived adhesion molecule-1 (PECAM-1, or CD31) and von Willebrand factor immunocytochemistry. HMVECs were treated with increasing EMP doses, and then, the effects of EMPs on growth factor-induced proliferation and migration were tested. Proliferation was assessed by H-thymidine incorporation. EC migration was assayed by photographing microtubules of HMVECs and HUVECs in fibrin gel incubated with EMPs +/- growth factors for 48 h. The EMP effects on non-valve HUVECs were tested in parallel. EMPs inhibited HMVEC proliferation at high doses but stimulated HUVEC proliferation at all doses. In HMVECs, EMPs inhibited basic fibroblast growth factor- and vascular endothelial growth factor-induced proliferation and migration. Taken together, these data suggest EMPs regulate valvular EC proliferation in a dose-dependent manner and, furthermore, modulate growth factor signaling in ECs. These results implicate EMPs as a possible source of downstream EC dysfunction in disease states. EMPs may play a role in valvular leaflet injury in human disease by inhibiting normal growth and repair of endothelium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.shk.0000209558.69575.80 | DOI Listing |
J Mol Neurosci
January 2025
Gilgamesh Ahliya University, Baghdad, Iraq.
Glioma is a highly aggressive and invasive brain tumor with limited treatment options, highlighting the need for novel therapeutic approaches. Kinesin superfamily proteins (KIFs) are a diverse group of motor proteins that play essential roles in cellular processes such as mitosis, intracellular transport, and signal transduction, all of which are crucial for tumorigenesis. This review focuses on the multifaceted role of KIFs in glioma, examining their clinical relevance, contribution to tumor progression, and potential as therapeutic targets.
View Article and Find Full Text PDFBull Math Biol
January 2025
Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
Mathematical models of immune responses have traditionally focused on adaptive immunity and pathogen-immune dynamics. However, recent advances in immunology have highlighted the critical role of innate immunity. In response to physical damage or pathogen attacks, innate immune cells circulating throughout the body rapidly migrate from blood vessels and accumulate at the site of injury, triggering inflammation.
View Article and Find Full Text PDFOrthop Surg
January 2025
Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China.
Objective: Knee osteoarthritis (KOA) is characterized by structural changes. Aging is a major risk factor for KOA. Therefore, the objective of this study was to examine the role of genes related to aging and circadian rhythms in KOA.
View Article and Find Full Text PDFJ Neuroendocrinol
January 2025
Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
Gonadotroph neuroendocrine pituitary tumors are among the most common intracranial neoplasms. A notable proportion of these tumors is characterized by invasive growth which hampers the treatment results and worsens prognoses of patients. Increased hsa-miR-184 expression was observed in invasive as compared to non-invasive gonadotroph tumors.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Ganjiang Chinese Medicine Innovation Center, Nanchang, China.
Gastric cancer is the fifth most common cancer and the fourth leading cause of cancer-related deaths worldwide, accounting for nearly 800,000 fatalities annually. ITGAX (Integrin alpha X) is closely associated with immune cells, such as macrophages and dendritic cells. Its involvement in gastric cancer was identified through an analysis of The Gene Expression Omnibus (GEO) database, which highlighted as one of four key gastric cancer-related genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!