The induction of DNA double-strand breaks (DSBs) by genotoxic treatment leads to high toxicity and genetic instability. Various approaches have been undertaken to quantify the number of breaks and to follow the kinetic of DSB repair. Recently, the phosphorylation of the variant histone H2AX (named gammaH2AX), quantified by specific immunodetection approaches, has provided a valuable and highly sensitive method to monitor DSBs formation. Although it is admitted that the number of gammaH2AX foci reflected that of DSBs, contradictory reports leave open the question of a link between the disappearance of gammaH2AX signal and DSBs repair. We determined gammaH2AX expression (i) in cells either proficient or not in DSBs repair capacity, (ii) after exposure to ionizing radiation (IR) or calicheamicin gamma1, a radiomimetic compound, (iii) and by three different immunodetection methods, foci numbering, flow cytometry or Western blotting. We showed here that gammaH2AX loss correlates with DSB repair activity only at low cytotoxic doses, when less than 100-150 DSBs breaks per genome are produced, independently of the method used. In addition, in DNA repair proficient cells, the early decrease in the number and intensity of gammaH2AX foci observed after a 2 Gy exposure was not associated with a significant change in the global gammaH2AX level as determined by Western blotting or flow cytometry. These results suggest that the dephosphorylation step of gammaH2AX may be limiting and that the loss of foci is mediated not only by gammaH2AX dephosphorylation but also through its redistribution towards the chromatin.

Download full-text PDF

Source
http://dx.doi.org/10.4161/cc.5.10.2799DOI Listing

Publication Analysis

Top Keywords

gammah2ax
9
gammah2ax signal
8
dsb repair
8
gammah2ax foci
8
dsbs repair
8
flow cytometry
8
western blotting
8
repair
6
dsbs
6
loss gammah2ax
4

Similar Publications

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and grave malignancies with confined and ineffective therapeutic options. XPO1 is a critical regulator of nuclear export and activation of tumor suppressor proteins. The present study evaluated the therapeutic potential and molecular mechanisms of XPO1 inhibition against PDAC.

View Article and Find Full Text PDF

Hyperinsulinemia connects obesity, and a poor lipid profile, with type 2 diabetes (T2D). Here, we investigated consequences of insulin exposure for T cell function in the canonical autoimmunity of rheumatoid arthritis (RA). We observed that insulin levels correlated with the glycolytic index of CD4+ cells but suppressed transcription of insulin receptor substrates, which was inversely related to insulin sensitivity.

View Article and Find Full Text PDF

B Chromosome Transcriptional Inactivation in the Spermatogenesis of the Grasshopper .

Genes (Basel)

November 2024

Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

Background/objectives: We analyzed the relationship between synapsis, recombination, and transcription during the spermatogenesis of the grasshopper carrying B chromosomes (type B1).

Methods: The progression of synapsis was interpreted according to the dynamics of the cohesin subunit SMC3 axes. DNA double-strand breaks were revealed by RAD51 immunolabeling, while transcriptional activity was determined by the presence of RNA polymerase II phosphorylated at serine 2 (pRNApol II) immunolabeling.

View Article and Find Full Text PDF

: Brain cancer is notoriously resistant to traditional treatments, including radiotherapy. Microbeam radiation therapy (MRT), arrays of ultra-fast synchrotron X-ray beams tens of micrometres wide (called peaks) and spaced hundreds of micrometres apart (valleys), is an effective alternative to conventional treatments. MRT's advantage is that normal tissues can be spared from harm whilst maintaining tumour control.

View Article and Find Full Text PDF

Boanmycin overcomes bortezomib resistance by inducing DNA damage and endoplasmic reticulum functional impairment in multiple myeloma.

Biol Direct

January 2025

Department of Hematology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.

Background: Multiple myeloma (MM) is a hematological malignancy characterized by uncontrolled proliferation of plasma cells and is currently incurable. Despite advancements in therapeutic strategies, resistance to proteasome inhibitors, particularly bortezomib (BTZ), poses a substantial challenge to disease management. This study aimed to explore the efficacy of boanmycin, a novel antitumor antibiotic, in overcoming resistance to BTZ in MM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!