Improved tumor destruction with arsenic trioxide and radiofrequency ablation in three animal models.

Radiology

Laboratory for Minimally Invasive Tumor Therapy, Department of Radiology, Beth Israel Deaconess Medical Center, 1 Deaconess Rd, WCC 308B, Boston, MA 02215, USA.

Published: July 2006

Purpose: To assess the extent of tumor blood flow reduction that is achievable with arsenic trioxide (As2O3) and the effect of As2O3 on radiofrequency (RF)-induced coagulation.

Materials And Methods: All animal protocols and experiments were approved by an institutional animal care and use committee before the start of the study. Experiments were conducted in three tumor models: intrarenal VX2 sarcoma in 27 rabbits, RCC 786-0 human renal cell carcinoma in 24 nude mice, and R3230 mammary adenocarcinoma in 40 rats. One dose (0-7.5 mg per kilogram of body weight) of As2O3 was administered (intraperitoneally in rodents, intravenously in rabbits) 1, 6, or 24 hours before standardized RF ablation, which was performed by using a 1-cm active tip, with mean temperatures of 70 degrees C +/- 2 (standard deviation) for 5 minutes in rodents and 90 degrees C +/- 2 for 6 minutes in rabbits. Laser Doppler flowmetry was used to quantify changes in blood flow, which were compared with diameters of induced tumor coagulation. Comparisons between groups were performed by using Student t tests or analysis of variance. The strengths of correlations between As2O3, tumor blood flow, and RF-induced coagulation were assessed by using linear and higher-order regression models and reported as R2 computations.

Results: Administration of As2O3 significantly (P < .05) reduced blood flow and increased tumor destruction in all tumor models. In VX2 sarcoma tumors, 1 mg/kg As2O3 reduced mean tumor blood flow to 46% +/- 13 of the normal value. The mean resultant coagulation (1.1 cm +/- 0.1) was significantly greater than that achieved with RF ablation alone (0.6 cm +/- 0.1, P < .01). In RCC 786-0 and R3230 tumors, 5 mg/kg As2O3 reduced mean tumor blood flow to 57% +/- 6 and 46% +/- 6 of normal, respectively, increasing mean ablation extent to 0.8 cm +/- 0.1 for both models, compared with those achieved with the control treatment (0.6 cm +/- 0.1 and 0.5 cm +/- 0.1, respectively; P < .05 for both comparisons). Dose studies revealed correlations between drug dose, tumor blood flow, and RF-induced coagulation in all three tumor models (R2 = 0.60-0.79). Maximal RF synergy was observed 1 hour after As2O3 administration.

Conclusion: As2O3 administration represents a transient noninvasive method of reducing tumor blood flow during RF ablation, enabling larger zones of tumor destruction in multiple tumor models.

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.2401050788DOI Listing

Publication Analysis

Top Keywords

blood flow
32
tumor blood
24
tumor models
16
tumor
13
tumor destruction
12
as2o3 reduced
12
+/-
10
as2o3
9
arsenic trioxide
8
blood
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!