Soft-lithographic replication of 3D microstructures with closed loops.

Proc Natl Acad Sci U S A

Eugene F. Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA.

Published: June 2006

There is growing interest in lithographic technologies for creating 3D microstructures. Such techniques are generally serial in nature, prohibiting the mass production of devices. Soft-lithographic techniques show great promise for simple and rapid replication of arrays of microstructures but have heretofore not been capable of direct replication of structures with closed loops. We demonstrate that 3D microstructures created with multiphoton absorption polymerization can be replicated by using microtransfer molding to afford complex daughter structures containing closed loops. This method relieves many of the topological constraints of soft lithography, paving the way for the large-scale replication of true 3D microstructures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464799PMC
http://dx.doi.org/10.1073/pnas.0603247103DOI Listing

Publication Analysis

Top Keywords

closed loops
12
structures closed
8
microstructures
5
soft-lithographic replication
4
replication microstructures
4
microstructures closed
4
loops growing
4
growing interest
4
interest lithographic
4
lithographic technologies
4

Similar Publications

While internal hernias are rare in the paediatric population, it should be considered as a cause for an acute abdomen following blunt trauma. Internal hernias represent a surgical emergency that requires prompt recognition due to the high risk of strangulation and ischaemia of affected bowel loops. The case of a transomental hernia (TOH) is described in a young girl.

View Article and Find Full Text PDF

Background: Echolocating bats face an intense arms race with insect prey that can detect bat calls and initiate evasive maneuvers. Their high closing speeds and short biosonar ranges leave bats with only a few 100 ms between detection and capture, suggesting a reactive sensory-motor operation that might preclude tracking of escaping prey. Here we test this hypothesis using greater mouse-eared bats (Myotis myotis) as a model species.

View Article and Find Full Text PDF

Examples of long-range gene regulation in bacteria are rare and generally thought to involve DNA looping. Here, using a combination of biophysical approaches including X-ray crystallography and single-molecule analysis for the KorB-KorA system in Escherichia coli, we show that long-range gene silencing on the plasmid RK2, a source of multi-drug resistance across diverse Gram-negative bacteria, is achieved cooperatively by a DNA-sliding clamp, KorB, and a clamp-locking protein, KorA. We show that KorB is a CTPase clamp that can entrap and slide along DNA to reach distal target promoters up to 1.

View Article and Find Full Text PDF

DNA Damage-Induced Ferroptosis: A Boolean Model Regulating p53 and Non-Coding RNAs in Drug Resistance.

Proteomes

January 2025

Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil.

The tumor suppressor p53, in its wild-type form, plays a central role in cellular homeostasis by regulating senescence, apoptosis, and autophagy within the DNA damage response (DDR). Recent findings suggest that wild-type p53 also governs ferroptosis, an iron-dependent cell death process driven by lipid peroxidation. Post-translational modifications of p53 generate proteoforms that significantly enhance its functional diversity in regulating these mechanisms.

View Article and Find Full Text PDF

In recent times, chemical looping offered a sustainable alternative for upgrading light hydrocarbons into olefins. Olefins are valuable platform chemicals that are utilized for diverse applications. To close the wide shortfall in their global supply, intensified efforts are ongoing to develop on-purpose production technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!