Assessment of a sewage sludge treatment on cadmium, copper and zinc bioavailability in barley, ryegrass and earthworms.

Environ Pollut

Sanexen Environmental Services Inc., 1471 Lionel-Boulet Boulevard, Varennes, Quebec J3X 1P7, Canada.

Published: January 2007

The toxicity and bioavailability of metals were assessed to verify the efficiency of a new chemical leaching process (METIX-AC) to minimize the risk of metals found in municipal sewage sludge. For this purpose, sludge samples were spiked with cadmium, copper and/or zinc before being treated using METIX-AC. The sludge decontamination resulted in a removal of spiked metals (79-89%), in a decrease of the more labile fractions, and in a corresponding increase of the residual fraction. The toxicity observed after exposure of two plant species, barley (Hordeum vulgare) and ryegrass (Lolium perenne), and a terrestrial invertebrate, Eisenia andrei, to sludge-soil mixtures, disappeared after treatment, although the adverse effects were minor before treatment. The sludge treatment also significantly decreased the bioaccumulation of cadmium, copper, and zinc in the exposed species. For cadmium, maximum tissue concentrations of 0.45+/-0.08 mg/kg in barley, 0.79+/-0.27 mg/kg in ryegrass, and 21.82+/-1.85 mg/kg in earthworm exposed to sludge before treatment decreased after treatment to values similar to those observed with negative controls.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2006.04.001DOI Listing

Publication Analysis

Top Keywords

sludge treatment
12
cadmium copper
12
sewage sludge
8
copper zinc
8
treatment decreased
8
sludge
6
treatment
6
assessment sewage
4
cadmium
4
treatment cadmium
4

Similar Publications

Wastewater treatment plants (WWTPs) are one of the major collection points of microplastics (MPs). The MPs in influents and effluents of WWTPs were assessed for three cities on the southern coast of the Caspian Sea in the winter and spring seasons. The MP removal rate of WWTPs ranged between 71.

View Article and Find Full Text PDF

The issue of environmental pollution caused by wastewater discharge from fruit juice production has attracted increasing attention. However, the cost-effectiveness of conventional treatment technology remains insufficient. In this study, a gravity-driven membrane bioreactor (GDMBR) was developed to treat real fruit juice wastewater from secondary sedimentation at pressures ranging from 0.

View Article and Find Full Text PDF

Estuaries are transitional zones between rivers and marine environments, with intensive human activities. Pollutants pose a threat to the ecological systems of estuaries. Among these pollutants, microplastics and antibiotic resistant genes have gained significant attention due to their potential impacts on estuarine organisms and human health.

View Article and Find Full Text PDF

Bacteriophage as a novel therapeutic approach for killing multidrug-resistant ST131 clone.

Front Microbiol

December 2024

Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu, Republic of Korea.

The emergence of the multidrug-resistant (MDR) ST131 clone has significantly impacted public health. With traditional antibiotics becoming less effective against MDR bacteria, there is an urgent need for alternative treatment options. This study aimed to isolate and characterize four lytic phages (EC.

View Article and Find Full Text PDF

This study evaluated the integration of electrocoagulation into a lab-scale membrane bioreactor (EC-MBR) for treating wastewater from a detergent manufacturing plant. The EC-MBR system achieved a higher chemical oxygen demand (COD) and anionic surfactant removal efficiencies of 95.1% and 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!