Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionnukkkvd122phasce3tgv19hq729mcina): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Curr Top Med Chem
Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., PO Box 4, West Point, PA 19486, USA.
Published: September 2006
This article describes recent progress towards validation of the N-methyl-D-aspartate (NMDA) receptor hypofunction hypothesis of schizophrenia in preclinical models. Schizophrenia, a complex disease characterized by positive, negative and cognitive symptoms, affects 1% of the world population and requires lifelong, daily maintenance therapy. For the last several decades, thinking in this field has been dominated by the hypothesis that hyperfunction of dopamine pathways played a key role in schizophrenia. However, the therapeutic agents developed from this hypothesis have a slow onset of action and tend to improve only the positive symptoms of the disease. The NMDA receptor antagonist PCP has been shown to induce the positive, negative and cognitive symptoms of schizophrenia in healthy patients and cause a resurgence of symptoms in stable patients. These observations led to the NMDA receptor hypofunction hypothesis as an alternative theory for the underlying cause of schizophrenia. According to this hypothesis, any agent that can potentiate NMDA receptor currents has the potential to ameliorate the symptoms of schizophrenia. To date, NMDA receptor currents can be modulated by either direct action on modulatory sites on the NMDA receptor (i.e., the glycine co-agonist binding site) or indirectly by activation of G-protein coupled receptors (GPCRs) known to potentiate NMDA receptor function (i.e., mGluR5). This review will discuss the NMDA receptor hypofunction hypothesis, the NMDA receptor as an emerging target for the development of novel antipsychotic agents and progress towards in vivo target validation with GlyT1 inhibitors and mGluR5 positive allosteric modulators. Other potential targets for modulating NMDA receptor currents (polyamine sites, muscarinic receptors, etc...) will also be addressed briefly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/156802606777057599 | DOI Listing |
Cell Rep
March 2025
Center for Neural Science, New York University, New York, NY 10003, USA. Electronic address:
Conscious access is suggested to involve "ignition," an all-or-none activation across cortical areas. To elucidate this phenomenon, we carry out computer simulations of a detection task using a mesoscale connectome-based model for the multiregional macaque cortex. The model uncovers a dynamic bifurcation mechanism that gives rise to ignition in a network of associative regions.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
February 2025
Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia.
N-methyl D-aspartate receptor (NMDAR) channel blockers produce analgesic and antidepressant effects by preferentially inhibiting the GluN2D subtype at lower doses. Given the distinct physiological role of GluN2 subunits, we hypothesized that compounds capable of simultaneously modulating GluN2A and GluN2D subtypes in opposite directions could serve as effective analgesics with minimal cognitive adverse effects. In this translational study, we investigated the in vivo effects of costa NMDAR stimulator 4 (CNS4), a recently discovered glutamate concentration-dependent NMDAR modulator.
View Article and Find Full Text PDFSci Rep
March 2025
Department of Pharmacological and Biomolecular Sciences (DiSFeB) "Rodolfo Paoletti", University of Milan, Milan, Italy.
The synaptic protein Rabphilin 3A (Rph3A), encoded by the RPH3A gene, is a known binding partner of the NMDA receptor (NMDAR) complex, which is essential for synaptic plasticity and cognitive functions. A recent report demonstrated a causal association between missense variants in the RPH3A gene and neurodevelopmental disorders, manifesting as either drug-resistant epilepsy with intellectual disability or as autism spectrum disorder with learning disability. In this study, we used primary hippocampal neurons to analyse synaptic effects induced by the p.
View Article and Find Full Text PDFNeuropharmacology
March 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China.
Alzheimer's disease (AD) and vascular dementia (VaD) are two prevalent forms of dementia. VaD is linked to cerebrovascular lesions, such as those from white matter ischemia and chronic cerebral hypoperfusion, which can also occur in AD. Nitric oxide (NO) regulates cerebral blood flow (CBF) in the central nervous system.
View Article and Find Full Text PDFProg Neurobiol
March 2025
Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France; Lead contact. Electronic address:
The activation of classical NMDA receptors (NMDARs) requires the binding of a co-agonist in addition to glutamate. Whereas astrocytic-derived d-serine was shown to play such a role at CA3-CA1 hippocampal synapses, the exact mechanism by which neurons interact with neighboring astrocytes to regulate synaptic d-serine availability remains to be fully elucidated. Considering the close anatomical apposition of astrocytic and neuronal elements at synapses, the aforementioned process is likely to involve cells adhesion molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.