Rhodium-catalyzed ring-opening reactions of N-boc-azabenzonorbornadienes with amine nucleophiles.

J Am Chem Soc

Davenport Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5H 3H6.

Published: May 2006

In the presence of a rhodium catalyst (5 mol %) generated in situ from [Rh(cod)Cl](2) and (S,S')-(R,R')-C(2)-ferriphos (4a), the asymmetric ring-opening reaction of azabenzonorbornadienes (1a-m) with various aliphatic and aromatic amines (2a-l) proceeded with high enantioselectivity (up to >99% ee) to give the corresponding 1,2-diamine derivatives 3 in high yields. In the specific case of pyrrolidine as nucleophile, Et(3)NHCl was necessary as an additive for good reactivity and enantioselectivity. Additionally, a practical protocol was developed for the ring-opening of 1a with volatile amines at elevated temperatures and standard pressure, using R(2)NH(2)I and i-Pr(2)NEt. The experimental results showed that the nature of the chiral ligand has the significant impact on the reactivity of the catalyst and the use of excess amount (2.2 eq to Rh) of the chiral ligand plays an important role to improve the enantioselectivity in the present asymmetric reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0577701DOI Listing

Publication Analysis

Top Keywords

chiral ligand
8
rhodium-catalyzed ring-opening
4
ring-opening reactions
4
reactions n-boc-azabenzonorbornadienes
4
n-boc-azabenzonorbornadienes amine
4
amine nucleophiles
4
nucleophiles presence
4
presence rhodium
4
rhodium catalyst
4
catalyst mol
4

Similar Publications

Three two-dimensional (2D) chiral Ag(I) complexes with formulas [Ag(L)(5-nipa)] (), [Ag(L)(5-nipa)] (), and {[Ag(L)(5-hipa)]·2HO} () were prepared through the reactions of AgO with enantiopure -monodentate N-donors (L/L) and different dicarboxylic acids bearing A (acceptor)-π-- and D (donor)-π--type structural features, where / = (-)/(+)-2-(4'-pyridyl)-4,5-pinene-pyridine, 5-Hnipa = 5-nitroisophthalic acid, and 5-Hhipa = 5-hydroxyisophthalic acid. A study of their nonlinear optical responses reveals that chiral and enantiomeric pairs with the A-π--type dicarboxylic acid ligand simultaneously display second- and third-harmonic generation (SHG and THG) responses, while chiral containing the D-π--type dicarboxylic acid ligand only exhibits a very strong THG response. The THG intensity of is 451 × α-SiO, being about 27 and 24 times larger than those of and , respectively.

View Article and Find Full Text PDF

Asymmetric Synthesis of Azahelicenes via CPA-Catalyzed Kinetic Resolution.

Org Lett

January 2025

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.

The azahelicenes are structurally fascinating and practically useful chiral scaffolds, but their synthesis, especially in a catalytically asymmetric manner, is rather challenging. Herein, we report a CPA-catalyzed transfer hydrogenation process, which enables a rapid kinetic resolution of aza[6]helicenes. The established strategy provides facile access to enantioenriched aza[6]helicenes and tetrahydro[6]helicenes from easily available starting materials.

View Article and Find Full Text PDF

Amino-Acid-Induced Circularly Polarized Luminescence of Octahedral Lanthanide Cage.

Angew Chem Int Ed Engl

January 2025

Zhengzhou University, College of Chemistry, No 100. Kexue Avenue, 450001, Zhengzhou, CHINA.

Chiral metal organic cage compounds with excellent circularly polarized luminescent performance have broad application prospects in many fields. Herein, two lanthanide complexes with luminescent properties in the form of racemic hexagonal octahedral cages were synthesized using a tri (β-diketone) ligand. Eu6(C21H6F15O6)8(H2O)6 exhibited red light emission with high quantum yields of 61%.

View Article and Find Full Text PDF

Lewis Acid-Mediated Regioselective Hydrofunctionalization of Styrenes with Isatins and Heterocycles.

J Org Chem

January 2025

School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.

The ligand-free Lewis acid-mediated regioselective hydroamination and hydroarylation of styrenes have been successfully developed in the presence of isatins or heterocyclic aryl compounds such as benzothiophenes and benzofurans. The reactions tolerate a variety of functional groups and afford the corresponding products in moderate to good yields. Deuterium labeling experiments show that the functionalized hydrogen of styrenes was derived from the nitrogen-hydrogen of the substrates in the hydroamination.

View Article and Find Full Text PDF

Chiral allyl amines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allyl amines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!