Animal models have been an essential tool for researchers and clinicians in their efforts to study and treat Parkinson's disease (PD). Thus, the various ways 6-hydroxydopamine is employed, the use of MPTP in rodents and nonhuman primates, the prenatal exposure to bacterial endotoxin, the postnatal exposure to environmental toxins such as paraquat and rotenone, the assessment of dopamine (DA) neurons in genetic knockout mouse, and even the behavioral analysis of fruit flies and worms have added significantly to our knowledge base of PD--or have they? Are these animal models manifesting a true model of PD? Have the 7786 published studies (to date) on PD with animal models led to a clearer understanding of its etiology, treatment, or progression? In this review we critically assess this question. We begin with a succinct history of the major contributions, which have led to the current animal models of PD. We then evaluate the primary issue of the progressive loss of DA neurons, which, except for a few studies, has not been addressed in animal models of PD, even though this is the major pathological characteristic of the disease. Lastly, we discuss the possibility that more than one risk factor for PD may be necessary to develop an animal model that shows synergy--the progressive loss of DA neurons. Thus, the multiple hit hypothesis of PD-that is, the effect of more then one risk factor-may be the start of new era in animal models of PD that is one step closer to mimicking the pathology of PD in humans.

Download full-text PDF

Source
http://dx.doi.org/10.3727/000000006783981990DOI Listing

Publication Analysis

Top Keywords

animal models
24
parkinson's disease
8
multiple hit
8
hit hypothesis
8
progressive loss
8
loss neurons
8
animal
7
models
6
progressive dopamine
4
dopamine neuron
4

Similar Publications

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.

View Article and Find Full Text PDF

Background: Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!