Lewis acid stabilized OPI3: implications for the nature of free OPI3.

Chemistry

Universität Karlsruhe TH, Institut für Anorganische Chemie, Engesserstrasse Geb. 30.45, 76128 Karlsruhe, Germany.

Published: July 2006

While reinvestigating the published synthesis of OPI(3), it became evident from the experiments that phosphoryl triodide may only be formed as an intermediate and that the end products of the reaction of OPCl(3) with LiI are P(V) oxides, PI(3), I(2), and LiCl. This is also in agreement with MP2/TZVPP calculations, which assign Delta(r)H degrees (Delta(r)G degrees ) [Delta(r)G degrees in CHCl(3)] for the disproportionation of OPI(3) as -7 (-18) [-17 kJ mol(-1)] (assuming P(4)O(10) as the P(V) oxide). The first products of this reaction visible in a low-temperature in situ (31)P NMR experiment are P(2)I(4) and PI(3), as well as traces of a compound that may be OPCl(2)I. By contrast, it was possible to prepare and structurally characterize Lewis acid [A] stabilized [A]<--OPX(3) adducts, where [A] is Al(OR(F))(3) for X=Br and Al(OR(F))(2)(mu-F)Al(OR(F))(3) for X=I (R(F)=C(CF(3))(3)). These adducts are formed on decomposition of PX(4) (+)[Al(OR(F))(4)](-); high yields of Br(3)PO-->Al(OR(F))(3) (delta((31)P)=-65) were obtained, while I(3)PO-->Al(OR(F))(3) (delta((31)P)=-337) and I(3)PO-->Al(OR(F))(2)(mu-F)Al(OR(F))(3) (delta((31)P)=-332) are only formed as by-products. The main product of the room-temperature decomposition of PI(4) (+)[Al(OR(F))(4)](-) is PI(4) (+)[(R(F)O)(3)Al(mu-F)Al(OR(F))(3)](-), which was also characterized by X-ray crystallography and was independently prepared from Ag(+)[(R(F)O)(3)Al(mu-F)Al(OR(F))(3)](-), PI(3), and I(2).

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200501188DOI Listing

Publication Analysis

Top Keywords

lewis acid
8
products reaction
8
acid stabilized
4
opi3
4
stabilized opi3
4
opi3 implications
4
implications nature
4
nature free
4
free opi3
4
opi3 reinvestigating
4

Similar Publications

Copper(II)-Catalyzed Asymmetric (3+3) Annulation of Diaziridines with Oxiranes.

Org Lett

January 2025

State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

Highly asymmetric (3+3) annulation of diaziridines with oxiranes via C-N bond cleavage in diaziridine was achieved under 10 mol % of chiral copper(II) complex as the catalyst under mild reaction conditions. With Cu(OTf) as the Lewis acid and C-symmetric imidazolidine-pyrroloimidazolone pyridine as the ligand, diverse tetrahydro-[1,3,4]-oxadiazines were obtained by stereospecific C-N/C-O bond formation in moderate to good yields (up to 93% yield) and high diastereo- (>20:1 dr) and enantioselectivities (up to 92% ee). The catalytic cycle and stereochemical model were proposed by DFT calculation.

View Article and Find Full Text PDF

We have developed efficacious routes toward the selective synthesis of two classes of compounds such as C-3 amino-methylated indoles and 4-indol-3-yl-methylanilines from the same precursors, namely, indoles and 1,3,5-triazinanes. It is reported that the controlled cleavage of 1,3,5-triazinanes can be effected by heat for the generation of aryl imine motifs, and we observed that the presence of Lewis acid influences the course of these transformations toward different products. The reaction toward indol-3-yl-methylanilines proceeds via a nucleophilic attack of indole to the aryl imine generated from the 1,3,5-triazinanes to form an amino-methylated product which undergoes a Lewis acid mediated Hofmann-Martius-type rearrangement.

View Article and Find Full Text PDF

The Electrochemical Iodination of Electron-Deficient Arenes.

Angew Chem Int Ed Engl

January 2025

Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany.

The iodination of electron-deficient arenes and heteroarenes is a long-standing problem in organic synthesis. Herein we describe the electrochemical iodination in nitromethane with BuNI as iodine source and supporting electrolyte under Lewis acid-free conditions in the presence of small amounts of chloride anions. The electrochemically generated reagent could be applied for the iodination of halogenated arenes, aromatic aldehydes, acids, esters, ketones, as well as nitroarenes to afford the products in good to excellent yields.

View Article and Find Full Text PDF

Zn(TFSI)-Mediated Ring-Opening Polymerization for Electrolyte Engineering Toward Stable Aqueous Zinc Metal Batteries.

Nanomicro Lett

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, People's Republic of China.

Practical Zn metal batteries have been hindered by several challenges, including Zn dendrite growth, undesirable side reactions, and unstable electrode/electrolyte interface. These issues are particularly more serious in low-concentration electrolytes. Herein, we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.

View Article and Find Full Text PDF

ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!