Lidocaine has been reported to inhibit nitric oxide (NO) production in activated murine macrophages, but the role of inducible NO synthase (iNOS) in lidocaine-induced inhibition of NO has not been explored. In addition, type-2 cationic amino acid transporter (CAT-2) and guanosine triphosphate cyclohydrolase I (GTPCH) also regulate iNOS activity. The effects of lidocaine on CAT-2 and GTPCH are unknown. To explore further these effects, confluent immortalized murine macrophages (RAW264.7 cells) were incubated with lipopolysaccharide (LPS) or in combination with lidocaine (5, 50, or 500 microM) for 18 h before harvesting. We also used tetrodotoxin (TTX) and veratridine to elucidate the possible role of voltage-sensitive Na+ channel. Our data demonstrated that LPS significantly upregulated transcription of iNOS and CAT-2 but not GTPCH in stimulated macrophages. In a dose-dependent manner, lidocaine significantly attenuated the LPS-induced upregulation of iNOS and CAT-2. Conversely, lidocaine significantly increased GTPCH transcription in LPS-stimulated macrophages. The effects of TTX on iNOS, CAT-2, and GTPCH expression were comparable to those of lidocaine. In addition, veratridine significantly attenuated the effects of lidocaine and TTX. We therefore concluded that lidocaine significantly inhibits iNOS and CAT-2 and, in turn, enhances GTPCH transcription in LPS-stimulated macrophages via a mechanism that possibly involves the voltage-sensitive Na+ channel.

Download full-text PDF

Source
http://dx.doi.org/10.1213/01.ANE.0000219593.15109.DBDOI Listing

Publication Analysis

Top Keywords

inos cat-2
16
murine macrophages
12
voltage-sensitive na+
12
na+ channel
12
cat-2 gtpch
12
lidocaine
9
nitric oxide
8
cationic amino
8
amino acid
8
activated murine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!