Collagenase-2 and -3 mediate epidermal growth factor receptor transactivation by bradykinin B2 receptor in kidney cells.

J Pharmacol Exp Ther

Ralph H. Johnson Veterans Affairs Medical Center, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425-2227, USA.

Published: September 2006

We have previously shown that stimulation of extracellular signal-regulated protein kinase (ERK) by bradykinin (BK) in murine inner medullary collecting duct (mIMCD)-3 cells is mediated by epidermal growth factor receptor (EGFR) transactivation. The mechanism of EGFR transactivation seemed to be novel, because it does not require phospholipase C, Ca(2+), calmodulin, protein kinase C, G alpha(i) subunits, or EGFR-B(2) receptor heterodimerization. In this study, we demonstrated the involvement of matrix metalloproteinases (MMPs) in B(2) receptor-induced EGFR transactivation using their broad-spectrum inhibitors batimastat and N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-l-tryptophan methylamide (Galardin) (GM-6001). Selective inhibitors for collagenase-2 and -3 (MMP-8 and MMP-13, respectively) blocked BK-induced EGFR phosphorylation and ERK activation, whereas inhibitors for MMP-1, -2, -3, -7, or -9 were without effect. Transfection of mIMCD-3 cells with MMP-8 small interfering RNA (siRNA) resulted in approximately 50% decrease of BK-induced ERK activation. A neutralizing antibody against MMP-13 as well as transfection with MMP-13 siRNA produced a similar effect. Inhibition of both collagenases resulted in approximately 65% decrease of BK-induced ERK activation, supporting roles for both enzymes. Stimulation of mIMCD-3 cells with 10 nM BK increased the activity of collagenases in concentrated culture media within 10 min. Moreover, recombinant MMP-13 and MMP-8, when applied to mIMCD-3 cells for 10 min without BK, stimulated tyrosine phosphorylation of EGFR and caused approximately 250% increase over basal ERK phosphorylation comparable with BK-induced ERK activation. Collagenases-induced ERK activation was inhibited by 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG-1478) and thus dependent on EGFR tyrosine kinase activity. This study demonstrates a novel role for collagenase-2 and -3 in signaling of the G(q)-coupled BK B(2) receptor in mIMCD-3 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.106.104000DOI Listing

Publication Analysis

Top Keywords

mimcd-3 cells
20
erk activation
20
egfr transactivation
12
bk-induced erk
12
epidermal growth
8
growth factor
8
factor receptor
8
protein kinase
8
decrease bk-induced
8
erk
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!