Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cortical reorganization has been demonstrated during performance of a motor task in patients with multiple sclerosis. Converging evidence suggests that changes in gray matter volume represent an early hallmark of the disease. We used functional MRI to investigate the role of cortical adaptive mechanisms in maintaining visuo-motor function in the face of structural damage. Two cohorts of patients with clinically definite relapsing-remitting multiple sclerosis were compared with healthy controls matched for demographic, motor and cognitive characteristics during the performance of a visuo-motor integration task. Direct comparison between the two groups demonstrated a greater response of the contralateral dorsal premotor cortex and of the ipsilateral superior parietal cortex in relapsing-remitting multiple sclerosis patients. The functional MRI changes in these areas were strongly correlated with decreased gray matter volumes and increased lesion burden, respectively. Our study demonstrated a selective involvement of the parieto-premotor circuitry in a relatively early stage of the disease, which was not influenced by clinical, motor or cognitive variables. Moreover these results confirm the potential for functional recovery and the adaptive role of these areas in the motor reorganization of multiple sclerosis patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2005.11.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!