A sensitive and reproducible method to measure relative levels of polymerized and soluble tubulin in cells has been developed. This method involves metabolically labeling cells with radioactive amino acids followed by lysis in a microtubule-stabilizing buffer, centrifugation to separate soluble from polymerized tubulin, resolution of the proteins in each fraction by two-dimensional gel electrophoresis, and quantitation of the tubulin by liquid scintillation counting of spots excised from the gel. Several buffers were evaluated for their reproducibility and efficacy in preserving the state of in vivo microtubule assembly at the time of cell lysis, and the ability of the technique to measure drug-induced changes in tubulin polymerization was determined. Results using this method indicate that Chinese hamster ovary cells maintain approximately 40% of the cellular tubulin in an assembled form. Dose-dependent decreases in tubulin polymerization could be measured in Colcemid-treated cells, while dose-dependent increases in assembly were measured in taxol-treated cells. The results with taxol indicate that, following the increase in microtubule polymerization, there is a time-dependent bundling of microtubules that occurs without further increases in the extent of tubulin assembly. Examination of drug-resistant Chinese hamster ovary cells reveals that Colcemid-resistant mutants maintain more tubulin in the polymerized state (approximately 50%), while taxol-resistant mutants maintain less assembled tubulin (about 28%). Similar changes occur regardless of whether the mutant cells have an alteration in alpha- or in beta-tubulin. A model to explain these results is discussed.
Download full-text PDF |
Source |
---|
Viruses
January 2025
School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
Coronavirus epidemics have posed a serious threat to both human and animal health. To combat emerging infectious diseases caused by coronaviruses, various animal infection models have been developed and applied in research, including non-human primate models, ferret models, hamster models, mouse models, and others. Moreover, new approaches have been utilized to develop animal models that are more susceptible to infection.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand.
: Pinocembrin is a promising drug candidate for treating ischemic stroke. The interaction of pinocembrin with drug transporters and drug-metabolizing enzymes is not fully revealed. The present study aims to evaluate the interaction potential of pinocembrin with cytochrome P450 (CYP450: CYP2B6, CYP2C9, and CYP2C19) and drug transporters including organic anion transporters (OAT1 and OAT3), organic cation transporters (OCT1 and OCT2), multidrug and toxin extrusion (MATE1 and MATE2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP).
View Article and Find Full Text PDFBiotechnol Prog
January 2025
Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria.
We present the first use of a bioengineered mammalian transposase system derived from Myotis lucifugus (bMLT) for integration of expression vectors into the CHO genome, focusing on GFP and trastuzumab production. Initially, CHO-K1 cells are transfected with a GFP reporter and varying amounts of bMLT DNA or mRNA. GFP expression is monitored over 17 weeks without selective pressure.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Monoclonal antibodies are extensively used as biotherapeutics for treatment of a variety of diseases. Glycosylation of therapeutic antibodies is considered a critical quality attribute as it influences the effector function, circulatory half-life, immunogenicity, and eventually efficacy and patient safety. During upstream process development, media components play a significant role in determining the glycosylation profile.
View Article and Find Full Text PDFPrep Biochem Biotechnol
January 2025
Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
Chinese hamster ovary (CHO) cells represent the most common host system for the expression of high-quality recombinant proteins. The development of stable CHO cell lines used in industrial recombinant protein production often relies on dihydrofolate reductase (DHFR) and glutamine synthetase (GS) amplification systems. Conventional approaches to develop stable cell lines lead to heterogeneous cell populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!