NFkappaB is a participant in the process whereby cells adapt to stress. We have evaluated the activation of NFkappaB pathway by hyperosmotic stress in cultured cardiomyocytes and its role in the activation of caspase and cell death. Exposure of cultured rat cardiomyocytes to hyperosmotic conditions induced phosphorylation of IKKalpha/beta as well as degradation of IkappaBalpha. All five members of the NFkappaB family were identified in cardiomyocytes. Analysis of the subcellular distribution of NFkappaB isoforms in response to hyperosmotic stress showed parallel migration of p65 and RelB from the cytosol to the nucleus. Measurement of the binding of NFkappaB to the consensus DNA kappaB-site binding by EMSA revealed an oscillatory profile with maximum binding 1, 2 and 6h after initiation of the hyperosmotic stress. Supershift analysis revealed that p65 and RelB (but not p50, p52 or cRel) were involved in the binding of NFkappaB to DNA. Hyperosmotic stress also resulted in activation of the NFkappaB-lux reporter gene, transient activation of caspases 9 and 3 and phosphatidylserine externalization. The effect on cell viability was not prevented by ZVAD (a general caspase inhibitor). Blockade of NFkappaB with AdIkappaBalpha, an IkappaBalpha dominant negative overexpressing adenovirus, prevented activation of caspase 9 (more than that caspase 3) but did not affect cell death in hyperosmotically stressed cardiomyocytes. We conclude that hyperosmotic stress activates p65 and RelB NFkappaB isoforms and NFkappaB mediates caspase 9 activation in cardiomyocytes. However cell death triggered by hyperosmotic stress was caspase- and NFkappaB-independent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2006.05.023DOI Listing

Publication Analysis

Top Keywords

hyperosmotic stress
28
cell death
16
p65 relb
12
nfkappab
10
hyperosmotic
8
stress activates
8
cultured cardiomyocytes
8
caspase activation
8
activation caspase
8
nfkappab isoforms
8

Similar Publications

Role of in Filamentous Growth and Pathogenicity of .

J Fungi (Basel)

November 2024

Key Laboratory of Microbiological Metrology, Measurement & Bio-Product Quality Security, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.

is a dimorphic fungus that specifically infects , causing stem swelling and the formation of an edible fleshy stem known as jiaobai. The pathogenicity of is closely associated with the development of jiaobai and phenotypic differentiation. Msb2 acts as a key upstream sensor in the MAPK (mitogen-activated protein kinase) signaling pathway, playing critical roles in fungal hyphal growth, osmotic regulation, maintenance of cell wall integrity, temperature adaptation, and pathogenicity.

View Article and Find Full Text PDF

Endoplasmic Reticulum Stress Induces ROS Production and Activates NLRP3 Inflammasome Via the PERK-CHOP Signaling Pathway in Dry Eye Disease.

Invest Ophthalmol Vis Sci

December 2024

State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.

Purpose: The purpose of this study was to investigate the potential roles of endoplasmic reticulum (ER) stress in the development of dry eye disease (DED).

Methods: Single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, derived from corneal tissues of a dry eye mouse model, was processed using the Seurat R program. The results were validated using a scopolamine-induced dry eye mouse model and a hyperosmotic-induced cell model involving primary human corneal epithelial cells (HCECs) and immortalized human corneal epithelial (HCE-2) cells.

View Article and Find Full Text PDF

Deciphering how natural selection emerges from demographic differences among genotypes, and reciprocally how evolution affects population dynamics, is key to understanding population responses to environmental stress. This is especially true in non-trivial ecological scenarios, such as programmed cell death (PCD) in unicellular organisms, which can lead to massive population decline in response to stress. To understand how selection may operate on this trait, we exposed monocultures and mixtures of two closely related strains of the microalga , one of which induces PCD, to multiple cycles of hyper-osmotic shocks, and tracked demography and selection throughout.

View Article and Find Full Text PDF

NmrA homologs have been reported as conserved regulators of the nitrogen metabolite repression (NMR) in various fungi. Here, we identified a NmrA homolog in and reported its functions in nitrogen utilization, growth and development, and pathogenesis. VdNmrA interacts with AreA protein and regulates the expression of a typical NCR target, the formamidase gene.

View Article and Find Full Text PDF

p38α and p38β regulate osmostress-induced apoptosis.

J Biol Chem

December 2024

Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain. Electronic address:

Hyperosmotic shock induces cytochrome c release and caspase-3 activation in Xenopus oocytes. Different signaling pathways engaged by osmostress converge on the mitochondria to trigger cell death. The mitogen activated protein kinases (MAPKs) JNK1-1 and JNK1-2 are early activated by hyperosmotic shock and sustained activation of both isoforms accelerates the apoptotic program.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!