AI Article Synopsis

Article Abstract

Cardiomyopathies are complex myocardial diseases characterized by inappropriate ventricular hypertrophy (HCM) or dilation (DCM). Both disorders may lead to sudden death or progressive heart failure and exhibit familial aggregation with marked genetic heterogeneity. Many candidate genes were identified by linkage analysis, experimental animal studies, and expression analysis. A systematic assessment of the prevalence of different mutations in these genes requires high-throughput analyses. In this paper, we present a simple and reliable protocol for mutation screening by heteroduplex analysis which reduced costs and workload of sequencing. Employing denaturing gradient gel electrophoresis (DGGE), 11 known and 14 potential candidate genes for HCM and DCM were analyzed. DGGE assays allowed analysis of 286 of the 312 protein coding exons, performing only four alternative polymerase chain reaction protocols and only two different DGGE analysis conditions. Sensitivity for the detection of heteroduplexes proved excellent, even for GC-rich DNA fragments, which were analyzed by a combination of DGGE and constant denaturant gel electrophoresis. To confirm DGGE sensitivity in cases where no variants in our human DNA samples could be observed, we generated heteroduplexes from homologous human and chimpanzee DNA. The platform proved a valuable contribution to elucidating the genetic causes of DCM and HCM as demonstrated by the identification of 17 different known and novel mutations and 98 different polymorphisms in our setting.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00109-006-0056-2DOI Listing

Publication Analysis

Top Keywords

mutation screening
8
candidate genes
8
gel electrophoresis
8
dgge
6
analysis
5
large-scale mutation
4
screening patients
4
patients dilated
4
dilated hypertrophic
4
hypertrophic cardiomyopathy
4

Similar Publications

Introduction: Dolutegravir (DTG) + lamivudine (3TC) demonstrated high rates of virologic suppression (VS) and low rates of virologic failure (VF), discontinuation, and drug resistance in randomized trials. Real-world evidence can support treatment effectiveness, safety, and tolerability in clinical practice and aid in treatment decisions.

Methods: A systematic literature review (SLR) was conducted to identify studies using DTG + 3TC (January 2013-March 2024).

View Article and Find Full Text PDF

[Research advances in maturity-onset diabetes of the young].

Zhongguo Dang Dai Er Ke Za Zhi

January 2025

Department of Endocrine, Genetics and Metabolism, Children's Hospital Affiliated to Xi'an Jiaotong University, Xi'an 710003, China.

Maturity-onset diabetes of the young (MODY) is a special type of diabetes characterized by clinical features including early onset of diabetes (before 30 years of age), autosomal dominant inheritance, impaired glucose-induced insulin secretion, and hyperglycemia. So far, 14 types of MODY have been reported, accounting for about 1%-5% of the patients with diabetes. MODY often presents with an insidious onset, and although 14 subtypes have been identified for MODY, it is frequently misdiagnosed as type 1 or type 2 diabetes due to overlapping clinical features and high costs and limitations of genetic testing.

View Article and Find Full Text PDF

[Clinical characteristics and prognosis of acute erythroleukemia in children].

Zhongguo Dang Dai Er Ke Za Zhi

January 2025

Department of Children's Hematology and Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.

Objectives: To investigate the clinical characteristics and prognosis of acute erythroleukemia (AEL) in children.

Methods: A retrospective analysis was conducted on the clinical data, treatment, and prognosis of 8 children with AEL treated at the First Affiliated Hospital of Zhengzhou University from January 2013 to December 2023.

Results: Among the 7 patients with complete bone marrow morphological analysis, 4 exhibited trilineage dysplasia, with a 100% incidence of erythroid dysplasia (7/7), a 71% incidence of myeloid dysplasia (5/7), and a 57% incidence of megakaryocytic dysplasia (4/7).

View Article and Find Full Text PDF

KEAP1 mutations as key crucial prognostic biomarkers for resistance to KRAS-G12C inhibitors.

J Transl Med

January 2025

Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

Background: KRAS-G12C inhibitors mark a notable advancement in targeted cancer therapies, yet identifying predictive biomarkers for treatment efficacy and resistance remains essential for optimizing clinical outcomes.

Methods: This systematic meta-analysis synthesized studies available through September 2024 across PubMed, Cochrane Library, SpringerLink, and Embase. Using CRISPR/Cas9 technology, this study generated cells with KEAP1 and STK11 knockouts, and utilized lentiviral vectors to overexpress PD-L1.

View Article and Find Full Text PDF

Background: Epidermal growth factor receptor (EGFR) gene mutations can lead to distant metastasis in non-small cell lung cancer (NSCLC). When the primary NSCLC lesions are removed or cannot be sampled, the EGFR status of the metastatic lesions are the potential alternative method to reflect EGFR mutations in the primary NSCLC lesions. This review aimed to evaluate the potential of magnetic resonance imaging (MRI) radiomics based on extrapulmonary metastases in predicting EGFR mutations through a systematic reviews and meta-analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!