Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules.

Drug Metab Dispos

Department of Pharmacology and Toxicology 149, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.

Published: August 2006

Different gene-silencing methods, like antisense and short interfering RNA (siRNA), are widely used as experimental tools to inhibit gene expression. In the present study, the in vivo behavior of siRNA in rats and siRNA-mediated silencing of genes in the renal proximal tubule were investigated. To study the biodistribution of siRNA, rats were injected i.v. with radiolabeled siRNA or radiolabel alone (control), and scintigraphic images were acquired at different time intervals postinjection. The siRNA preferentially accumulated in the kidneys and was excreted in the urine. One hour after injection, the amount of siRNA present in both kidneys (1.7 +/- 0.3% of injected dose/g tissue) was on average 40 times higher than in other tissues (liver, brain, intestine, muscle, lung, spleen, and blood). Besides the biodistribution, the effect of siRNA on multidrug resistance protein isoform 2 (Mrp2/Abcc2, siRNAMrp2) in renal proximal tubules was investigated. Mrp2 function was assessed by measuring the excretion of its fluorescent substrate calcein in the isolated perfused rat kidney. Four days after administration, siRNAMrp2 reduced the urinary calcein excretion rate significantly (35% inhibition over the period 80-150 min of perfusion). This down-regulation was specific because another siRNA sequence directed against a different transporter in the proximal tubule, Mrp4 (Abcc4, siRNAMrp4), did not alter the Mrp2-mediated excretion of calcein. In conclusion, siRNA accumulates spontaneously in the kidney after i.v. injection, where it selectively suppresses gene function in the proximal tubules. Therefore, i.v. administered siRNA provides a novel experimental and potential therapeutic tool for gene silencing in the kidney.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.106.009555DOI Listing

Publication Analysis

Top Keywords

renal proximal
12
proximal tubules
12
sirna
10
short interfering
8
interfering rna
8
selectively suppresses
8
suppresses gene
8
gene function
8
sirna rats
8
proximal tubule
8

Similar Publications

Background: Oliguric acute kidney injury (AKI) is one of the critical conditions which needs emergent treatment due to the lack of the capacity of excreting toxins and fluids, and plasma membrane bleb formation is considered as one of the characteristic morphologic alterations in ischemic AKI in both animal models and human. We present here an autopsy case with clear electron microscopy images capturing a definitive instance of blebbing in ischemic AKI.

Case Presentation: A 66-year-old man was admitted for oliguric AKI with nephrotic syndrome (NS).

View Article and Find Full Text PDF

Oxidative stress-associated proximal tubular cells (PTCs) damage is an important pathogenesis of hypertensive renal injury. We previously reported the protective effect of VEGFR3 in salt-sensitive hypertension. However, the specific mechanism underlying the role of VEGFR3 in kidney during the overactivation of the renin-angiotensin-aldosterone system remains unclear.

View Article and Find Full Text PDF

On the substrate turnover rate of NBCe1 and AE1 SLC4 transporters: structure-function considerations.

Front Physiol

January 2025

Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.

A transport protein's turnover rate (TOR) is the maximum rate of substrate translocation under saturating conditions. This parameter represents the number of transporting events per transporter molecule (assuming a single transport site) per second (s). From this standpoint, a transporter's TOR is similar to an enzyme's catalytic constant.

View Article and Find Full Text PDF

Autosomal recessive proximal renal tubular acidosis (AR-pRTA) with ocular abnormalities is a rare syndrome caused by variants in the SLC4A4 gene, which encodes Na/HCO3 cotransporter (NBCe1). The syndrome primarily affects the kidneys, but also causes extra-renal manifestations. Pancreatic type NBCe1 is located at the basolateral membrane of the pancreatic ductal cells and together with CFTR chloride channel, it is involved in bicarbonate secretion.

View Article and Find Full Text PDF

Background: Multisystem inflammatory syndrome in neonates (MIS-N) is a rare condition thought to be associated with prenatal exposure to maternal severe acute respiratory syndrome coronavirus 2 infection. This immune-mediated hyperinflammation has been described in neonates with multiorgan dysfunction, including cardiopulmonary, encephalopathy, coagulopathy, and vascular complications. However, renovascular complications in MIS-N are rare.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!