Structure of the '30 nm' chromatin fibre: a key role for the linker histone.

Curr Opin Struct Biol

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.

Published: June 2006

The structure of the '30 nm' chromatin fibre has eluded us for 30 years and remains a major unsolved problem in biology. Progress during the past year has led to the proposal of two significantly different models: one derived from the crystal structure of a four-nucleosome core array lacking the linker histone and the other, much more compact structure, derived from electron microscopy analysis of long nucleosome arrays containing the linker histone. The first model is of the two-start helix type, the second a one-start helix with interdigitated nucleosomes. These models provide new evidence that the topology and compactness of the '30 nm' chromatin fibre structure are regulated by the linker histone. The structural information also provides insights into the mechanisms by which the degree of chromatin compaction might be regulated by histone composition and post-transcriptional modifications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.sbi.2006.05.007DOI Listing

Publication Analysis

Top Keywords

linker histone
16
'30 nm'
12
nm' chromatin
12
chromatin fibre
12
structure '30
8
structure
5
histone
5
chromatin
4
fibre key
4
key role
4

Similar Publications

A complex interplay between histone variants and DNA methylation.

J Exp Bot

January 2025

Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France.

Nucleosomes, the chromatin building blocks, play an important role in controlling DNA and chromatin accessibility. Nucleosome remodeling and the incorporation of distinct histone variants confer unique structural and biochemical properties, influencing the targeting of multiple epigenetic pathways, particularly DNA methylation. This stable epigenetic mark suppresses transposable element expression in plants and mammals, serving as an additional layer of chromatin regulation.

View Article and Find Full Text PDF

Proper histone gene expression is critical to cell viability and maintaining genomic integrity. Multiple histone genes organized into three genomic loci encode for replication coupled core and linker histones. Histone gene expression and transcript processing is orchestrated in the histone locus body (HLB) within the nucleus.

View Article and Find Full Text PDF

Acetylation-enhanced Sp1 transcriptional activity suppresses Mlph expression.

Sci Rep

January 2025

Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea.

Melanosome transport is regulated by major proteins, including Rab27a, Melanophilin (Mlph), and Myosin Va (Myo-Va), that form a tripartite complex. Mutation of these proteins causes melanosome aggregation around the nucleus. Among these proteins, Mlph is a linker between Rab27a and Myo-Va.

View Article and Find Full Text PDF

Previously we discovered that among 15 DNA-binding plant secondary metabolites (PSMs) possessing anticancer activity, 11 compounds cause depletion of the chromatin-bound linker histones H1.2 and/or H1.4.

View Article and Find Full Text PDF

In eukaryotic nuclei, DNA is wrapped around an octamer of core histones to form nucleosomes. H1 binds to the linker DNA of nucleosome to form the chromatosome, the next structural unit of chromatin. Structural features on individual chromatosomes contribute to chromatin structure, but not fully characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!