A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Kinetic stability plays a dominant role in the denaturant-induced unfolding of Erythrina indica lectin. | LitMetric

Kinetic stability plays a dominant role in the denaturant-induced unfolding of Erythrina indica lectin.

Biochim Biophys Acta

Department of Chemistry, Presidency College, 86/1 College Street, Kolkata 700 073, India.

Published: June 2006

The urea-induced denaturation of dimeric Erythrina indica lectin (EIL) has been studied at pH 7.2 under equilibrium and kinetic conditions in the temperature range of 40-55 degrees C. The structure of EIL is largely unaffected in this temperature range in absence of denaturant, and also in 8 M urea after incubation for 24 h at ambient temperature. The equilibrium denaturation of EIL exhibits a monophasic unfolding transition from the native dimer to the unfolded monomer as monitored by fluorescence, far-UV CD, and size-exclusion FPLC. The thermodynamic parameters determined for the two-state unfolding equilibrium show that the free energy of unfolding (DeltaGu, aq) remains practically same between 40 and 55 degrees C, with a value of 11.8 +/- 0.6 kcal mol(-1) (monomer units). The unfolding kinetics of EIL describes a single exponential decay pattern, and the apparent rate constants determined at different temperatures indicate that the rate of the unfolding reaction increases several fold with increase in temperature. The presence of probe like external metal ions (Mn2+, Ca2+) does not influence the unfolding reaction thermodynamically or kinetically; however, the presence of EDTA affects only kinetics. The present results suggest that the ability of EIL to preserve the structural integrity against the highly denaturing conditions is linked primarily to its kinetic stability, and the synergic action of heat and denaturant is involved in the unfolding of the protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2006.03.011DOI Listing

Publication Analysis

Top Keywords

kinetic stability
8
unfolding
8
erythrina indica
8
indica lectin
8
temperature range
8
unfolding reaction
8
eil
5
stability plays
4
plays dominant
4
dominant role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!