The oil companies operating in the Norwegian sector of the North Sea have conducted field studies since the mid-1990s to monitor produced water discharges to the ocean. These studies have been used to refine monitoring methods, and to develop and validate a dispersion and impact assessment model. This paper summarizes monitoring data from surveys conducted in two major oil and gas production areas, and compares the results to concentrations of polycyclic aromatic hydrocarbons (PAH) in surface waters predicted by the dose-related risk and effect assessment model (DREAM). Blue mussels and semi-permeable membrane devices (SPMDs) were deployed in the Ekofisk and Tampen Regions and analyzed for more than 50 PAH. PAH concentrations in ambient seawater were estimated based on the mussels and SPMD concentrations, and compared to model predictions. Surface water total PAH concentrations ranged from 25 to 350 ng/L within 1 km of the platform discharges and reached background levels of 4-8 ng/L within 5-10 km of the discharge; a 100,000-fold dilution of the PAH in the discharge water. The PAH concentrations in surface water, predicted by three methods, compared well for the Ekofisk Region. The model predicted higher concentrations than the field-based methods for parts of the Tampen Region; particularly the most tidally influenced areas. Tidally-mediated fluctuations in PAH concentrations in surface water must be considered because they affect the estimation of PAH concentrations from mussel and SPMD residue data, and the predictions by the DREAM model. Predictions using mussels, SPMDs, and modeling support and complement each other; all are valuable tools for estimating the fate and impact of chemical contaminants in produced water that are discharged to the ocean.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2006.03.013 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, S. P. Andersens Veg 5, 7031, Trondheim, Norway.
The characterization of tunnel wash water (TWW) from 12 Norwegian tunnels showed very high concentrations of total suspended solids (TSS), metals, and polycyclic aromatic hydrocarbons (PAHs). Iron (Fe), aluminum (Al), and manganese (Mn) were mainly particle-associated. They are efficiently removed by sedimentation, while the dissolved concentrations of toxic metals like Cu, Zn, and As did not change.
View Article and Find Full Text PDFJ Occup Environ Hyg
January 2025
Division of Field Studies and Engineering, National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, Ohio.
Structural firefighters are exposed to an array of polycyclic aromatic hydrocarbons (PAHs) as a result of incomplete combustion of both synthetic and natural materials. PAHs are found in both the particulate and vapor phases in the firefighting environment and are significantly associated with acute and chronic diseases, including cancer. Using a fireground exposure simulator (FES) and standing mannequins dressed in four different firefighter personal protective equipment (PPE) conditions, each with varying levels of protective hood interface and particulate-blocking features, the efficacy of the hoods was assessed against the ingress of PAHs (specifically, naphthalene).
View Article and Find Full Text PDFEnviron Health Insights
January 2025
African Centre of Excellence for Public Health and Toxicological Research, University of Port Harcourt, Port Harcourt, Nigeria.
This study evaluated the concentrations of polycyclic aromatic hydrocarbons (PAHs) and the carcinogenic risks of cattle and goat meats singed with either firewood, Liquefied Petroleum Gas (LPG) or tyres from five cities in Ghana. The meat samples, before and after singeing, as well as after scraping and washing, were collected from abattoirs and sent to Clinical Analysis Laboratory (Can-Lab) of Kwame Nkrumah University of Science and Technology (KNUST) for PAH analysis. Tyre-singed meats exhibit significantly higher PAHs concentrations ( = .
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, United States; Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States; New York University College of Global Public Health, New York City, NY, United States.
Background: Exposure to polycyclic aromatic hydrocarbons (PAHs) during childhood has been associated with altered growth and adiposity in children. The effects of prenatal exposure to PAHs on developmental programming of growth and adiposity are still unknown.
Objective: To study the association of prenatal exposure to PAHs with early childhood growth and adiposity measures.
J Hazard Mater
December 2024
School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China. Electronic address:
Indoor dust can adsorb various pollutants and long-term deposition can significantly impact air quality and human health. This study investigated the occurrence, source apportionment, and health risks associated with polycyclic aromatic hydrocarbons (PAHs) and their derivatives (d-PAHs) in indoor dust, by focusing on residential and public buildings in Nanjing, China. The concentration of 16 PAHs and 27 d-PAHs ranged from 511 to 5472 ng/g and from 422 to 2904 ng/g, with the most abundant compounds being fluoranthene and 1,2-benz[a]anthraquinone, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!