Histopathological effects induced by paraquat during Xenopus laevis primary myogenesis.

Tissue Cell

Dipartimento di Scienze dell'Ambiente e del Territorio, Università degli Studi di Milano-Bicocca, 1, Piazza della Scienza, I-20126 Milan, Italy.

Published: June 2006

The oxidative agent paraquat induced tail abnormalities during Xenopus laevis development. Specimens exposed from blastula to the tadpole stage revealed pear-shaped myocytes and irregular intersomitic boundaries. The histological feature of the axial musculature was evaluated in embryos sampled at significant stages of the primary myogenesis. During the somitogenesis PQ-treated embryos showed normal appearing myotomes, but reduced PAS activity in the post-rotating myotomal cells, and myoblasts with slight vacuolations. Once etched from the vitelline envelope, embryos showed severely altered myoblasts with irregular cellular apexes, heavy sarcoplasmic vacuolations, pyknotic nuclei and disorganizing intersomitic boundaries. Myotomes with many necrotic myocytes containing disorganized contractile material and heavily malformed intersomitic boundaries characterized the late myogenic stages. Our results evidence the heaviest PQ histopathological effects to affect myogenesis of post-etched embryos, suggesting a possible linkage between the swimming activity and the oxidative damage to muscle tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tice.2006.03.002DOI Listing

Publication Analysis

Top Keywords

intersomitic boundaries
12
histopathological effects
8
xenopus laevis
8
primary myogenesis
8
effects induced
4
induced paraquat
4
paraquat xenopus
4
laevis primary
4
myogenesis oxidative
4
oxidative agent
4

Similar Publications

Somitogenesis is often described using the clock-and-wavefront (CW) model, which does not explain how molecular signaling rearranges the pre-somitic mesoderm (PSM) cells into somites. Our scanning electron microscopy analysis of chicken embryos reveals a caudally-progressing epithelialization front in the dorsal PSM that precedes somite formation. Signs of apical constriction and tissue segmentation appear in this layer 3-4 somite lengths caudal to the last-formed somite.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are highly conserved small non-coding RNA molecules that post-transcriptionally regulate gene expression in multicellular organisms. Within the set of muscle-specific miRNAs, miR-206 expression is largely restricted to skeletal muscle and is found exclusively within the bony fish lineage. Although many studies have implicated miR-206 in muscle maintenance and disease, its role in skeletal muscle development remains largely unknown.

View Article and Find Full Text PDF

Crypto-rhombomeres of the mouse medulla oblongata, defined by molecular and morphological features.

Brain Struct Funct

March 2016

Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, and IMIB (Instituto Murciano de Investigación Biosanitaria), 30100, Murcia, Spain.

The medulla oblongata is the caudal portion of the vertebrate hindbrain. It contains major ascending and descending fiber tracts as well as several motor and interneuron populations, including neural centers that regulate the visceral functions and the maintenance of bodily homeostasis. In the avian embryo, it has been proposed that the primordium of this region is subdivided into five segments or crypto-rhombomeres (r7-r11), which were defined according to either their parameric position relative to intersomitic boundaries (Cambronero and Puelles, in J Comp Neurol 427:522-545, 2000) or a stepped expression of Hox genes (Marín et al.

View Article and Find Full Text PDF

Tbx protein level critical for clock-mediated somite positioning is regulated through interaction between Tbx and Ripply.

PLoS One

June 2015

Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan.

Somitogenesis in vertebrates is a complex and dynamic process involving many sequences of events generated from the segmentation clock. Previous studies with mouse embryos revealed that the presumptive somite boundary is periodically created at the anterior border of the expression domain of Tbx6 protein. Ripply1 and Ripply2 are required for the determination of the Tbx6 protein border, but the mechanism by which this Tbx6 domain is regulated remains unclear.

View Article and Find Full Text PDF

Background: Stromal derived factor-1α (sdf-1α), a chemoattractant chemokine, plays a major role in tumor growth, angiogenesis, metastasis, and in embryogenesis. The sdf-1α signaling pathway has also been shown to be important for somite rotation in zebrafish (Hollway et al., 2007).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!