Separation of orbital contributions to the optical conductivity of BaVS(3).

Phys Rev Lett

Electron Transport Research Group of the Hungarian Academy of Science and Department of Physics, Budapest University of Technology and Economics, 1111 Budapest, Hungary.

Published: May 2006

The correlation-driven metal-insulator transition (MIT) of BaVS(3) was studied by polarized infrared spectroscopy. In the metallic state two types of electrons coexist at the Fermi energy: the quasi-1D metallic transport of A(1g) electrons is superimposed on the isotropic hopping conduction of localized E(g) electrons. The "bad-metal" character and the weak anisotropy are the consequences of the large effective mass m(eff) approximately 7 m(e) and scattering rate Gamma > or = 160 meV of the quasiparticles in the A(1g) band. There is a pseudogap above T(MI) = 69 K, and in the insulating phase the gap follows the BCS-like temperature dependence of the structural order parameter with Delta(ch) approximately 42 meV in the ground state. The MIT is described in terms of a weakly coupled two-band model.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.96.186402DOI Listing

Publication Analysis

Top Keywords

separation orbital
4
orbital contributions
4
contributions optical
4
optical conductivity
4
conductivity bavs3
4
bavs3 correlation-driven
4
correlation-driven metal-insulator
4
metal-insulator transition
4
transition mit
4
mit bavs3
4

Similar Publications

Presented herein is a DFT/TDDFT study of -tetrakis(4-hydroxyphenyl)porphyrin (H[THPP]) and its -deprotonated tetraanionic form; the latter was modeled as both a free tetraanion and with various counterions. Based on our calculations, the experimentally observed hyperporphyrin spectra are attributed to an admixture of phenol/phenoxide character into the a-type HOMO of tetraphenylporphyrin. The admixture results in an elevation of the orbital energy of the HOMO in relation to other frontier orbitals, which accounts for the observed spectral redshifts.

View Article and Find Full Text PDF

Molecular Uranium Dioxide-Mediated CO Photoreduction.

J Am Chem Soc

January 2025

Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.

The reduction of CO mediated by transition metals has garnered significant interest, yet little is known about the reduction of CO using f-element compounds. Herein, the reduction of CO to CO by tetravalent uranium (U) compound UO is investigated via matrix isolation infrared spectroscopy and quantum chemical study. Our results reveal that a stable carbonate intermediate OUCO () can be prepared at low temperatures (4-12 K).

View Article and Find Full Text PDF

Energetic and Electronic Properties of AcX and LaX (X = O and F).

J Phys Chem A

January 2025

Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States.

The bonding and spectroscopic properties of LaX and AcX (X = O and F) diatomic molecules were studied by high-level ab initio CCSD(T) and SO-CASPT2 electronic structure calculations. Bond dissociation energies (BDEs) were calculated at the Feller-Peterson-Dixon (FPD) level. Potential energy curves and spectroscopic constants for the lowest-lying spin-orbit Ω states were obtained at the SO-CASPT2/aQ-DK level.

View Article and Find Full Text PDF

ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.

View Article and Find Full Text PDF

Core-Excited States for Open-Shell Systems in Similarity-Transformed Equation-of-Motion Theory.

J Chem Theory Comput

January 2025

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.

X-ray absorption spectroscopy (XAS) is a powerful method for exploring molecular electronic structure by exciting core electrons into higher unoccupied molecular orbitals. In this study, we present the first integration of the spin-unrestricted similarity-transformed equation-of-motion coupled cluster method (CVS-USTEOM-CCSD) for core-excited and core-ionized states into the ORCA quantum chemistry package. Using the core-valence separation (CVS) approach, we evaluate the accuracy of CVS-USTEOM-CCSD across 13 open-shell organic systems, covering over 20 core excitations with diverse spin multiplicities (doublet, triplet, and quartet).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!