Motivated by experiments on double quantum dots, we study the problem of a single magnetic impurity confined in a finite metallic host. We prove an exact theorem for the ground state spin, and use analytic and numerical arguments to map out the spin structure of the excitation spectrum of the many-body Kondo-correlated state, throughout the weak to strong coupling crossover. These excitations can be probed in a simple tunneling-spectroscopy transport experiment; for that situation we solve rate equations for the conductance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.96.176802 | DOI Listing |
Nat Commun
December 2024
PSI Center for Life Sciences, Villigen PSI, Switzerland.
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans. The binding and dissociation of ligands tunes the inherent conformational flexibility of these important drug targets towards distinct functional states. Here we show how to trigger and resolve protein-ligand interaction dynamics within the human adenosine A receptor.
View Article and Find Full Text PDFClin Infect Dis
December 2024
Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA.
Background: Timely antibiotic initiation is critical to sepsis management, but there are limited data on the impact of giving β-lactams first vs vancomycin first amongst patients prescribed both agents.
Methods: We retrospectively analyzed all adults admitted to 5 US hospitals from 2015-2022 with suspected sepsis (blood culture collected, antibiotics administered, and organ dysfunction) treated with vancomycin and a broad-spectrum β-lactam within 24h of arrival. We estimated associations between β-lactam vs vancomycin first strategies and in-hospital mortality using inverse probability weighting (IPW) to adjust for potential confounders.
Proc Natl Acad Sci U S A
December 2024
Stanford Institute for Materials and Energy Sciences, Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory, Menlo Park, CA 94025.
Recent experiments suggest a new paradigm toward novel colossal magnetoresistance (CMR) in a family of materials EuM[Formula: see text]X[Formula: see text] (M [Formula: see text] Cd, In, Zn; X [Formula: see text] P, As), distinct from the traditional avenues involving Kondo-Ruderman-Kittel-Kasuya-Yosida crossovers, magnetic phase transitions with structural distortions, or topological phase transitions. Here, we use angle-resolved photoemission spectroscopy and density functional theory calculations to explore their origin, particularly focusing on EuCd[Formula: see text]P[Formula: see text]. While the low-energy spectral weight royally tracks that of the resistivity anomaly near the temperature with maximum magnetoresistance ([Formula: see text]) as expected from transport-spectroscopy correspondence, the spectra are completely incoherent and strongly suppressed with no hint of a Landau quasiparticle.
View Article and Find Full Text PDFAdv Mater
November 2024
Department of Physics, Washington University in St. Louis, St. Louis, MO, 63130, USA.
Since the initial discovery of 2D van der Waals (vdW) materials, significant effort has been made to incorporate the three properties of magnetism, band structure topology, and strong electron correlations-to leverage emergent quantum phenomena and expand their potential applications. However, the discovery of a single vdW material that intrinsically hosts all three ingredients has remained an outstanding challenge. Here, the discovery of a Kondo-interacting topological antiferromagnet is reported in the vdW 5f electron system UOTe.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America.
Time-resolved ultrafast spectroscopy has emerged as a promising tool to dynamically induce and manipulate non-trivial electronic states of matter out-of-equilibrium. Here we theoretically investigate light pulse driven dynamics in a Kondo lattice system close to quantum criticality. Based on a time-dependent auxiliary fermion mean-field calculation we show that light can dehybridize the local Kondo screening and induce oscillating magnetic order out of a previously paramagnetic state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!