A novel energetic smoothing mechanism in the growth of complex metal-oxide thin films is reported from in situ kinetic studies of pulsed laser deposition of on , using x-ray reflectivity. Below 50% monolayer coverage, prompt insertion of energetic impinging species into small-diameter islands causes them to break up to form daughter islands. This smoothing mechanism therefore inhibits the formation of large-diameter 2D islands and the seeding of 3D growth. Above 50% coverage, islands begin to coalesce and their breakup is thereby suppressed. The energy of the incident flux is instead rechanneled into enhanced surface diffusion, which leads to an increase in the effective surface temperature of DeltaT approximately 500 K. These results have important implications on optimal conditions for nanoscale device fabrication using these materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.96.176102 | DOI Listing |
Nanoscale
January 2025
Department of Molecular Science, BioCenter, Swedish University of Agricultural Sciences, Box 7015, 75007 Uppsala, Sweden.
The recent COVID-19 pandemic has set a strong quest for advanced understanding of possible tracks in abating and eliminating viral infections. In the view that several families of "pristine" small oxide nanoparticles (NPs) have demonstrated viricidal activity against SARS-CoV-2, we studied the effect of two NPs, with presumably different reactivity, on two viruses aiming to evaluate two "primary suspect" routes of their antiviral activity, either specific blocking of surface proteins or causing membrane disruption. The chosen NPs were non-photoactive 3.
View Article and Find Full Text PDFWater Res
January 2025
Department of Mechanical Engineering, Sogang University, Seoul, South Korea; Institute of Integrated Biotechnology, Sogang University, Seoul, South Korea; Department of Biomedical Engineering, Sogang University, Seoul, South Korea; Institute of Smart Biosensor, Sogang University, Seoul, South Korea. Electronic address:
Microplastic (MP) pollution poses serious environmental and public health concerns, requiring efficient detection methods. Conventional techniques have the limitations of labor-intensive workflows and complex instrumentation, hindering rapid on-site field analysis. Here, we present the Machine learning (ML)-Integrated Droplet-based REal-time Analysis of MP (MiDREAM) system.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States.
We present the synthesis of metal oxide coordination networks based on Preyssler-type polyoxoanions ([NaPWO] and [NaPMoWO]) bridged with metal-aquo complexes ([M(HO)], M = Co, Ni, Zn, Y), induced by electrochemical reduction. Networks bridged with first-row transition metals are isostructural with a previously reported Co-bridged structure, while the Y-bridged structure is new. All networks feature an uncommon binding motif of the metal cation to the oxygen atoms at cap positions, which we hypothesize is due to increased electron density at the cap upon reduction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China.
Tactile sensation and recognition in the human brain are indispensable for interaction between the human body and the surrounding environment. It is quite significant for intelligent robots to simulate human perception and decision-making functions in a more human-like way to perform complex tasks. A combination of tactile piezoelectric sensors with neuromorphic transistors provides an alternative way to achieve perception and cognition functions for intelligent robots in human-machine interaction scenarios.
View Article and Find Full Text PDFChemSusChem
January 2025
Institute for Materials Science, Chemical Materials Synthesis, University of Stuttgart, Heisenbergstraβe 3, 70569, Stuttgart, Germany.
All-solid-state Li-ion batteries (ASSBs) represent a promising leap forward in battery technology, rapidly advancing in development. Among the various solid electrolytes, argyrodite thiophosphates LiPSX (X=Cl, Br, I) stand out due to their high ionic conductivity, structural flexibility, and compatibility with a range of electrode materials, making them ideal candidates for efficient and scalable battery applications. However, despite significant performance advancements, the sustainability and recycling of ASSBs remain underexplored, posing a critical challenge for achieving efficient circular processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!