We report an extensive investigation of magnetic vortex lattice (VL) structures in single crystals of pure niobium with the magnetic field applied parallel to a fourfold symmetry axis, so as to induce frustration between the cubic crystal symmetry and hexagonal VL coordination expected in an isotropic situation. We observe new VL structures and phase transitions; all the VL phases observed (including those with an exactly square unit cell) spontaneously break some crystal symmetry. One phase even has the lowest possible symmetry of a two-dimensional Bravais lattice. This is quite unlike the situation in high-Tc or borocarbide superconductors, where VL structures orient along particular directions of high crystal symmetry. The causes of this behavior are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.96.167002DOI Listing

Publication Analysis

Top Keywords

crystal symmetry
12
vortex lattice
8
pure niobium
8
symmetry
5
spontaneous symmetry-breaking
4
symmetry-breaking vortex
4
lattice transitions
4
transitions pure
4
niobium report
4
report extensive
4

Similar Publications

The ability to tune the energy gap in bilayer graphene makes it the perfect playground for the study of the effects of internal electric fields, such as the crystalline field, which are developed when other layered materials are deposited on top of it. Here, we introduce a novel device architecture allowing simultaneous control over the applied displacement field and the crystalline alignment between two materials. Our experimental and numerical results confirm that the crystal field and electrostatic doping due to the interface reflect the 120° symmetry of the bilayer graphene/BN heterostructure and are highly affected by the commensurate state.

View Article and Find Full Text PDF

Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.

View Article and Find Full Text PDF

Theory for Dissipative Time Crystals in Coupled Parametric Oscillators.

Phys Rev Lett

December 2024

University of Maryland, College Park, Joint Quantum Institute, Condensed Matter Theory Center and, Department of Physics, Maryland 20742-4111, USA.

Discrete time crystals are novel phases of matter that break the discrete time translational symmetry of a periodically driven system. In this Letter, we propose a classical system of weakly nonlinear parametrically driven coupled oscillators as a test bed to understand these phases. Such a system of parametric oscillators can be used to model period-doubling instabilities of Josephson junction arrays as well as semiconductor lasers.

View Article and Find Full Text PDF

We report on the growth of a 2.86 at.% Ho:YGG crystal using the optical floating zone technique in an oxygen-rich environment, followed by the study of its structure, optical spectroscopy and first demonstration of continuous-wave laser operation at 2.

View Article and Find Full Text PDF

Symmetry Breaking: Case Studies with Organic Cage-Racemates.

Acc Chem Res

January 2025

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

ConspectusSymmetry is a pervasive phenomenon spanning diverse fields, from art and architecture to mathematics and science. In the scientific realms, symmetry reveals fundamental laws, while symmetry breaking─the collapse of certain symmetry─is the underlying cause of phenomena. Research on symmetry and symmetry breaking consistently provides valuable insights across disciplines, from parity violation in physics to the origin of homochirality in biology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!