We report on first measurements of the transverse characteristics of laser-produced energetic ion beams in direct comparison to results for laser accelerated proton beams. The experiments show the same low emittance for ion beams as already found for protons. Additionally, we demonstrate that the divergence is influenced by the charge over mass ratio of the accelerated species. From these observations we deduced scaling laws for the divergence of ions as well as the temporal evolution of the ion source size.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.96.154801 | DOI Listing |
Biomed Phys Eng Express
January 2025
Department of Medical Physics, Osaka Heavy Ion Therapy Center, Otemae, Chuo-ku, Osaka, Osaka, 5400008, JAPAN.
Objective Applying carbon ion beams, which have high linear energy transfer and low scatter within the human body, to Spatially Fractionated Radiation Therapy (SFRT) could benefit the treatment of deep-seated or radioresistant tumors. This study aims to simulate the dose distributions of spatially fractionated beams (SFB) to accurately determine the delivered dose and model the cell survival rate following SFB irradiation. Approach Dose distributions of carbon ion beams are calculated using the Triple Gaussian Model.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, JAPAN.
Accurate dose predictions are crucial to maximizing the benefits of carbon-ion therapy. Carbon beams incident on the human body cause nuclear interactions with tissues, resulting in changes in the constituent nuclides and leading to dose errors that are conventionally corrected using conventional single-energy computed tomography (SECT). Dual-energy computed tomography (DECT) has frequently been used for stopping power estimation in particle therapy and is well suited for correcting nuclear reactions because of its detailed body-tissue elemental information.
View Article and Find Full Text PDFInorg Chem
January 2025
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
Atomically precise nanoclusters, distinguished by their unique nuclearity- and structure-dependent properties, hold great promise for applications of energy conversion and electronic transport. However, the relationship between ligands and their properties remains a mystery yet to be unrevealed. Here, the influence of ligands on the electronic structures, optical properties, excited-state dynamics, and transport behavior of ReS dimer clusters with different ligands is explored using density functional theory combined with time-domain nonadiabatic molecular dynamic simulations.
View Article and Find Full Text PDFInt J Part Ther
March 2025
Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen, Germany.
Purpose: The spot size of scanned particle beams is of crucial importance for the correct dose delivery and, therefore, plays a significant role in the quality assurance (QA) of pencil beam scanning ion beam therapy.
Materials And Methods: This study compares 5 detector types-radiochromic film, ionization chamber (IC) array, flat panel detector, multiwire chamber, and IC-for measuring the spot size of proton and carbon ion beams.
Results: Variations of up to 30% were found between detectors, underscoring the impact of detector choice on QA outcomes.
RSC Adv
January 2025
Institute of Atomic and Molecular Sciences, Academia Sinica Taipei 106 Taiwan
Extreme ultraviolet (EUV) lithography is a cutting-edge technology in contemporary semiconductor chip manufacturing. Monitoring the EUV beam profiles is critical to ensuring consistent quality and precision in the manufacturing process. This study uncovers the practical use of fluorescent nanodiamonds (FNDs) coated on optical image sensors for profiling EUV and soft X-ray (SXR) radiation beams.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!