The optical absorption of the Fröhlich polaron model is obtained by an approximation-free diagrammatic Monte Carlo method and compared with two new approximate approaches that treat lattice relaxation effects in different ways. We show that: (i) a strong coupling expansion, based on the Franck-Condon principle, well describes the optical conductivity for large coupling strengths (alpha > 10); (ii) a memory function formalism with phonon broadened levels reproduces the optical response for weak coupling strengths (alpha < 6) taking the dynamic lattice relaxation into account. In the coupling regime 6 < alpha < 10, the optical conductivity is a rapidly changing superposition of both Franck-Condon and dynamic contributions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.96.136405 | DOI Listing |
PLoS Biol
January 2025
Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
Goal-directed behavior requires the effective suppression of distractions to focus on the task at hand. Although experimental evidence suggests that brain areas in the prefrontal and parietal lobe contribute to the selection of task-relevant and the suppression of task-irrelevant stimuli, how conspicuous distractors are encoded and effectively ignored remains poorly understood. We recorded neuronal responses from 2 regions in the prefrontal and parietal cortex of macaques, the frontal eye fields (FEFs) and the lateral intraparietal (LIP) area, during a visual search task, in the presence and absence of a salient distractor.
View Article and Find Full Text PDFJ Mol Model
January 2025
Nanjing Hydraulic Research Institute, Shanghai, China.
Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sichuan University, School of Chemical Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA.
Covalent organic frameworks (COFs) are often employed in oxygen reduction reactions (ORR) for hydrogen peroxide production due to their tunable structures and compositions. However, COF electrocatalysts require precise structural engineering, such as heteroatoms or metal site doping, to modulate the reaction pathway during the ORR process. In this work, we designed a tetraphenyl-p-phenylenediamine based COF electrocatalyst, namely TPDA-BDA, which exhibited excellent two-electron (2e) ORR performance with high H2O2 selectivity of 89.
View Article and Find Full Text PDFSemin Ophthalmol
January 2025
Department of Ophthalmology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA.
Objective: Ciliary body medulloepithelioma (CBME), a pediatric intraocular tumor with potential for locally aggressive behavior and metastasis, may present with a diverse spectrum of clinical and histopathologic features leading to diagnostic and management challenges. Examination of unusual CBME cases highlights challenges and modern diagnostic techniques which facilitate accurate diagnosis and guide management.
Methods: A retrospective clinicopathologic analysis of 6 patients with unusual clinical or pathologic features of CBME was performed.
Anal Chem
January 2025
Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
Microelectrodes offer exceptional sensitivity, rapid response, and versatility, making them ideal for real-time detection and monitoring applications. Photoelectrochemical (PEC) sensors have shown great value in many fields due to their high sensitivity, fast response, and ease of operation. Nevertheless, conventional PEC sensing relies on cumbersome external light sources and bulky electrodes, hindering its miniaturization and implantation, thereby limiting its application in real-time disease monitoring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!