It is common knowledge that light fluids rise while heavy fluids sink in the gravity field. The most obvious case is the isothermal Rayleigh-Taylor instability when a heavy fluid is placed on top of a light one. In the nonisothermal case, while heating from above, the density stratification is stable in a pure liquid. However, unstable density stratification might be established in a binary mixture with a negative Soret effect in the case of heating from above: the heavier liquid is accumulated on the top of the lighter one. Due to the large differences between viscous, thermal, and diffusion times the system has a tendency to fingering buoyant instabilities. At some moment the flow may be initiated. Near the onset of convection the flow pattern has a columnar convective structure: for a relatively low applied temperature difference Delta T the lighter and colder liquid is drawn up in the central part of the cell and the heavier liquid flows down along the walls. For finite size systems the situation is reversed at higher Delta T. Here we present results of three-dimensional direct numerical simulations of heat and mass transfer in a system with a negative Soret effect. While the development of Soret-induced convection is similar for a wide class of liquids: water based mixtures, colloidal, and polymer solutions, the parameters of the chosen system correspond to a realistic binary mixture of water (90%) and isopropanol (10%) enabling comparison of theoretical predictions with planned experimental studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.73.047302 | DOI Listing |
Sci Bull (Beijing)
December 2024
NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington DC 20005, USA.
El Niño-Southern Oscillation (ENSO) exhibits a strong asymmetry between warm El Niño and cold La Niña in amplitude and temporal evolution. An El Niño often leads to a heat discharge in the equatorial Pacific conducive to its rapid termination and transition to a La Niña, whereas a La Niña persists and recharges the equatorial Pacific for consecutive years preconditioning development of a subsequent El Niño, as occurred in 2020-2023. Whether the multiyear-long heat recharge increases the likelihood of a transition to a strong El Niño remains unknown.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Nonlinear Physical Chemistry Unit, Service de Chimie Physique et Biologie Théorique, Université libre de Bruxelles (ULB), CP 231 - Campus Plaine, 1050 Brussels, Belgium.
Exotic dynamics, previously associated only with reactions involving complex kinetics, have been observed even with simple bimolecular reactions A + B → C, when coupled with hydrodynamical flows. Numerical studies in two-dimensional reactors have shown that oscillatory dynamics can emerge from an antagonistic coupling between chemically-driven buoyancy and Marangoni convective flows, induced by changes in density and surface tension, respectively, as the reaction occurs. Here, we investigate reactions increasing both surface tension and density, leading to a cooperative coupling between the flows and show how, in this configuration, buoyancy-driven contribution dampens spatio-temporal oscillations of concentration.
View Article and Find Full Text PDFProg Earth Planet Sci
December 2024
School of Earth Sciences, Zhejiang University, Hangzhou, China.
Recent experimental investigations of grain size evolution in bridgmanite-ferropericlase assemblages have suggested very slow growth for these bimodal phases. Despite numerous speculations on grain size-dependent viscosity, a comprehensive test with realistic grain size evolution parameters compatible with the lower mantle has been lacking. In this study, we develop self-consistent 2-D spherical half-annulus geodynamic models of Earth's evolution using the finite volume code StagYY to assess the role of grain size on lower mantle viscosity.
View Article and Find Full Text PDFPharmaceutics
September 2024
Food Process Engineering, School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 1, 85354 Freising, Germany.
Drying experiments with varying air temperature and humidity were conducted to investigate the influence of the drying process on the crystallization of thin sucrose films. For the first time, the effects of the nucleation onset, nucleation rate, and growth rate were investigated in situ and their differentiated influence on product crystallinity could be assessed. The growth rate was not influenced by air humidity but showed a strong dependence on temperature.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Division of Geological and Planetary Sciences, Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125.
Subduction zones play a pivotal role in the mechanics of plate tectonics by providing the driving force through slab pull and weak megathrusts that facilitate the relative motion between tectonic plates. The initiation of subduction zones is intricately linked to the accumulation of slab pull and development of weakness at plate boundaries and, by consequence, the largest changes in the energetics of mantle convection. However, the transient nature of subduction initiation accompanied by intense subsequent tectonic activity, leaves critical evidence poorly preserved and making subduction initiation difficult to constrain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!