Optical properties of the iridescent organ of the comb-jellyfish Beroë cucumis (Ctenophora).

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Zoology, University of Oxford, South Park Road, Oxford OX1 3PS, United Kingdom.

Published: April 2006

Using transmission electron microscopy, analytical modeling, and detailed numerical simulations, the iridescence observed from the comb rows of the ctenophore Beroë cucumis was investigated. It is shown that the changing coloration which accompanies the beating of comb rows as the animal swims can be explained by the weakly-contrasted structure of the refractive index induced by the very coherent packing of locomotory cilia. The colors arising from the narrow band-gap reflection are shown to be highly saturated and, as a function of the incidence angle, cover a wide range of the visible and ultraviolet spectrum. The high transparency of the structure at the maximal bioluminescence wavelength is also explained.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.73.041916DOI Listing

Publication Analysis

Top Keywords

beroë cucumis
8
comb rows
8
optical properties
4
properties iridescent
4
iridescent organ
4
organ comb-jellyfish
4
comb-jellyfish beroë
4
cucumis ctenophora
4
ctenophora transmission
4
transmission electron
4

Similar Publications

Cucumber () trichomes play a critical role in resisting external biological and abiotic stresses. Glandular trichomes are particularly significant as they serve as sites for the synthesis and secretion of secondary metabolites, while non-glandular trichomes are pivotal for determining the appearance quality of cucumbers. However, current methods for separating trichomes encounter challenges such as low efficiency and insufficient accuracy, limiting their applicability in multi-omics sequencing studies.

View Article and Find Full Text PDF

Plants constitute a source of natural phytochemical components which are widely known for their potential biological activities. This work concerned a study of the antioxidant, anticancer and anti-inflammatory activities of squirting cucumber (Ecballium elaterium L.) parts (flowers, fruits, leaves and stems) using different solvent extracts (cyclohexane, dichloromethane, ethyl acetate, methanol and water).

View Article and Find Full Text PDF

Foliar application of nitrates limits lead uptake by Cucumis sativus L. plants.

J Trace Elem Med Biol

January 2025

Department of Molecular Plant Physiology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warszawa 02-096, Poland.

Lead is a toxic heavy metal, which accumulates in the soil and is readily absorbed by plant roots. The uptake of toxic elements by crops is a serious threat to human health. For this reason, it is important to prevent the incorporation of heavy metals into the food chain.

View Article and Find Full Text PDF

The use of fruit by-products to develop new food products could be an advantageous approach to meet the demand for healthy foods and reduce food waste. In this study, the amino acid and mineral profiles of melon peel flour were evaluated. Non-essential/toxic elements were also determined.

View Article and Find Full Text PDF

B-box (BBX) transcription factors play crucial roles in plant growth, development, and defense responses to biotic and abiotic stresses. In this study, we cloned a BBX transcription factor gene, from cucumber and analyzed its role in the plant's defense against the feeding of . is expressed throughout all developmental stages in cucumber, with the highest expression in the leaves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!